MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

Hashimi Sayed Mustafa

« Residential building based on prefabricated modular technology in Shymkent »

To the diploma project **EXPLANATORY NOTE**

Specialty 5B072900 – Civil Engineering

Almaty 2021

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

ALLOWED TO PROTECT

Head of Department Master of technical science, lecturer _____N.V. Kozyukova «___»____2021 yr.

EXPLANATORY NOTE to the diploma project

On the theme of « Residential building based on prefabricated modular technology in Shymkent »

5B072900 - "Civil Engeneering"

Prepared by

Scientific adviser

Hashimi Sayed Mustafa

N.V.Kozyukova Master of technical science, Lecturer «_____»___2021 yr.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and Civil Engineering named after T. Basenov

Department of Civil engineering and building materials

Specialty 5B072900 – Civil Engineering

I APPROVE

Head of Department _____N.V. Kozyukova Master of technical science, lecturer «___»____2021 yr.

ASSIGNMENT

Complete a diploma project

Student: Hashimi Sayed Mustafa

Topic: «Residential building based on prefabricated modular technology in Shymkent»

Approved by the Order of the Rector of the University No. 2131-b dated November 24, 2020.

The deadline for the completed work is May 10, 2020.

Initial data for the diploma project: construction area in Shymkent

Structural schemes of the building - frame-wall with cross-beams, structures are made of monolithic reinforced concrete, architectural solution(partitions made of brick walls).

List of questions to be developed:

a) Architectural and analytical part: basic initial data, space-planning solutions, heat engineering calculation of enclosing structures (outer wall), lighting calculation, calculation of the foundation option and depth of laying, justification of energy efficiency measures;

b) Calculation and design part: calculation and design of a slab and diaphgram;

c) Organizational and technological part: development of technological maps, construction schedule and construction plan;

d) Economic part: local estimate, object estimate, summary estimate;

List of graphic material (with exact indication of required drawings):

1 Facade, standard floor plans, parts 1-1 and 2-2 - 4 sheets;

2 KZh columns, specifications - 1 sheet;

3 Technical maps of concrete works, calendar plan, construction site plan - 4 sheets.

11 slides of work presentation are provided.

Recommended main literature: SP RK 2.04-01-2017 "Construction climatology", SN RK 2.04-04-2013 "Construction heat engineering", SN RK 2.03-30-2017 "Construction in seismic zones".

SCHEDULE preparation of thesis (project)

Part	30%	60%	90%	100%	Note	
Architectural and analytical	11.01.2021г 14.02.2021г.					
Calculation and design		15.02.2021г 23.03.2021г.				
Organizational and technological			24.03.2021г 01.05.2021г.			
Economic				01.05.2021г 09.05.2021г.		
Pre-defense		10.0	5.2021г14.05.20	021г.		
Anti-plagiarism, norm control	17.05.2021г31.05.2021г					
Quality control	26.05.2021г31.05.2021г.					
Defense		01.0	6.2021г11.06.20	021г.		

Signatures

consultants and the normative controller for the completed diploma work (project) with an indication of the parts of work (project) related to them

Name parts	Consultants, I.O.F. (academic degree, rank)	the date signing	Signature
Architectural and analytical	N.V. Kozyukova Master of technical science, lecturer		
Calculation and design	Calculation and design Master of technical science, lecturer		
Organizational and technological N.V. Kozyukova Master of technical science, lecturer			
Economic	N.V. Kozyukova Master of technical science, lecturer		
Norm controller	Bek A.A., Master of technical science, assistant		
Kozyukova N.V.,Quality controlMaster of technical science, lecturer			

Scientific adviser The task was accepted for execution student Kozyukova N.V.

Hashimi Sayed Mustafa

"___" ____ 20__ yr.

Date

АҢДАТПА

Осы дипломдық жұмыстың мақсаты - Қазақстанның Шымкент қаласында тұрғын үй кешенінің құрылысы. 13 млн. Көпқабатты сыйымдылығы Диссертация сәулет бөлігі, құрылыс бөлігі, технологиялық бөлігі және экономикалық бөлігі болып табылатын төрт бөлімнен тұрады және жобалау, технологиялық және жылу жобалау кезінде есептер шығарылды, бас жоспарға жоспарлау шешімдері негізделді, негізгі және көмекші сәйкес сәулет объектілердің орналасуы жасалды. Жасалды және негізгі техникалык экономикалық көрсеткіштер есептелді. Бұл 56 парақта ұсынылған, 20 кесте, 10 сурет, 54 формула, 2 қосымша, 20 сілтеме.

Түйін сөздер: құрылыс, саз, өндіріс, көп қабатты.

АННОТАЦИЯ

Целью данной дипломной работы является строительство многоэтажного жилого комплекса в городе Шымкент, Казахстан, мощностью 13 миллионов. Диссертация состоит из четырех частей, которые являются архитектурной частью, строительной частью, технологической частью и экономической частью, и в ходе проектирования были выполнены технологические и теплотехнические расчеты, архитектурно-планировочные решения были обоснованы в соответствии с генеральным планом, планировка основных и вспомогательных объектов была сделано, и основные технико-экономические показатели были рассчитаны. Окончательный вариант представлен на 56 страницах, включает 20 таблиц, 10 рисунков, 54 формул, 2 приложения, 20 ссылок.

Ключевые слова: строительство, глина, производство, многоэтажный.

ABSTRACT

The aim of this final thesis is the construction of a multi storey residential complex in Shymkent city of Kazakhstan with a capacity of 13 million. Thesis consists of four parts which are architectural part, construction part, technological part and economic part and during designing, technological and thermal engineering calculations were made, architectural planning decisions were justified according to the master plan, the layout of the main and auxiliary facilities was made, and the main technical and economic indicators were calculated. The final this is presented on 56 pages, includes 20 tables, 10 figures, 54 formulas, 2 appendixes, 20 references.

Keywords: construction, clay, production, multi storey.

CONTENT

Introduction	6
1 Architectural and construction section	7
1.1 Basic information about the construction site	7
1.2 Natural and climatic and engineering-geological conditions	7
1.3 General plan Landscaping	8
1.4 Constructive solutions of the object	8
1.5 Space planning solution	8
1.6 Thermo technical calculation of the outer wall	9
2 Anti seismic activities	10
3 Calculation and design	11
3.1 Calculation of slab	13
4 calculation of diaphragm	16
4.1 Calculation of a vertical diaphragm with a height 30m	16
4.2 Calculation of the diaphragm section	18
5 Analyzing in LIRA-SAPR:	20
5.1 Vertical load	20
5.2 Girdle deformations of the base	22
5.3 Deflection of the slab and girder	23
5.4 Horizontal movement from the wind	24
6 Organizational and technological	26
6.1 Determination of work volume	27
6.3 Concrete preparation for foundations	27
6.4 Reinforcement and Formwork installation	28
6.5 Concreting of foundations	28
6.6 Concrete compaction	29
6.7 Final land planning	29
6.8 Selection of the assembly crane	30
6.9 Selection and estimate of freight-catching devices	33
6.10 Design of concrete works	33
7 Determination of work labor input and crew composition	35
8 Definition of scope of work	38
8.1 Calculation of the turnover of scaffolding and formwork	40
8.2 Determination of labor volume and cost of exposure	41
9 Calculation of required parameters of mounting crane	43
10 Determination of the composition of the integrated team	48
11 Safety measures	50
11.1 Concrete and reinforced concrete work	52
11.2 Installation work	53
Conclusion	55
List of used literature	56

INTRODUCTION

Construction, being material-intensive, labor-intensive, capital-intensive, energy-intensive and science intensive production, contains the solution of many local and global problems, from social to environmental. Construction in our country is one of the leading industries economy. Currently, the possibilities of modern construction production is very wide and varied. The main task of capital construction at the present stage is attraction of investments, creation and renewal of fixed assets, intended for the development of production and construction; increasing the efficiency of capital investments in technical re-equipment and reconstruction of existing enterprises, for construction and the commissioning of new facilities. Modern construction world and domestic science offers for the designer a wide range of options for solving engineering problems, a huge selection of a park of machines, equipment, devices and mechanisms, offers many ways to organize work.

As the practice of recent years shows, at present in to a certain extent, the principles of architectural and construction design related to the further development of environmental science. The ecological approach to design has two directions: architectural and construction and engineering and technical (technological). Architectural and construction considers issues related to the organization of residential territories, the design of master plans of cities, the choice of volumetric planning and structural solutions of buildings and their conditions operation; Engineering - issues related to the creation of new technological processes and equipment to reduce or completely eliminate production and other emissions into the environment Wednesday. By using these solutions effectively, we can reduce the volume construction work by 30%. The project strictly adheres to the provisions of GOST and SNiP.

The use of a multi-storey residential building is primarily aimed at: save urban areas, since during the construction of multi-storey residential buildings it is possible Significantly increase the density of the settlement. Urban growth is "broad" and it aggravates the transportation problem and increases the length of engineering networks. Ultimately success the case depends on specific specialists, their professional training, breadth of outlook, flexibility of thinking, ability to find the optimal solution from all possible.

When choosing multi-storey residential buildings in large cities, the urban situation is taken into account, as well as the conditions for the reconstruction of central squares. Construction is an engineering operation for the construction of buildings and structures such as residential buildings.

1 Architectural and construction section

1.1 Basic information about the construction site

The graduation project was developed for the construction of "residential complex" located at: Shymkent, with territory of 141.2712 hectares.. "The degree of fire resistance of building is II "Fire safety of buildings and structures. The graduation project is designed for the following construction conditions:

Humidity zone - normal; Climatic region - IV(IVG); wind speed zone IV; snow zone III;

Climatic parameters of the cold season: air temperature of the coldest day: -17.7 °C; air temperature on the coldest five-day period: -14.3 °C; the construction area is seismic hazard, The construction site is located in the residential and administrative buildings zone.

1.2 Natural and climatic and engineering-geological conditions

Characteristic features of the climate of this territory are: abundance of sunlight and heat, continentally, hot, long summers, relatively cold with alternating thaws and cold snap winters, large annual and daily amplitudes of fluctuations in air temperature, air dryness and changes in climatic characteristics with the height of the terrain. The wind regime of the study area is quite heterogeneous and changes with distance from the mountains. Maximum wind speed is 6m/s in January.

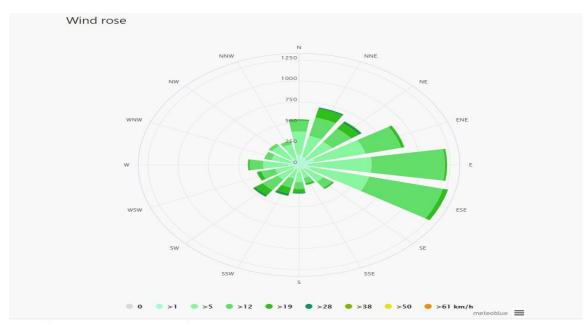


Figure 1 - Wind rose according to the weather station of city A of the camp

1.3 General plan Landscaping

The general plan was developed in accordance with the urban planning situation and the required orientation of the premises, the master plan for the development of areas, taking into account the landscaping and landscaping in accordance with the requirements of SN RK 3.02-07.2014 " Public buildings and structures" and SP RK 3.01-101-2013 "Urban planning. Improvement and greening of the site envisaged by the project reduces the general dust content and eliminates local foci of dust.

1.4 Constructive solutions of the object

Residential building reinforced concrete monolithic frame with a bezel-less system. Dimensions of columns 500x500 mm, diaphragms of rigidity 300 mm, thickness of floor slabs 220 mm(360 with insulation and roofing layers). Foundations - raft with a monolithic grillage Walls:

-the external walls should be made of a gas block 250 mm thick / D 500 / ;

-internal partitions of aerated concrete blocks with a thickness of 100, 200 mm; -in bathrooms made of ceramic, ceramic, full-body brick, M75 GOST 530- 2012 with M100 solution, thickness 120, 250 mm. Ceilings and coatings

- monolithic: Stairs

- monolithic; Protections
- aluminum; Platforms
- monolithic reinforced concrete; Lintels

- prefabricated reinforced concrete in brick walls and partitions; The construction of the mine is reinforced concrete. The insulation is adopted according to the heat engineering calculation; the roof is flat, rolled; gutter

- internal organized with heating. Outside lining:
- 1. Basement walls
- granite tiles;
- 2. Walls fiber-cement slabs;
- 3. Decorative lamellas aluminum;
- 4. Porch heat-treated granite;
- 5. The blind area of the building is paving stones.

Doors: metal entrance doors; entrance groups on the 1st floor - a glazed door, an aluminum frame; doors in technical rooms - metal;

Windows: Stained-glass windows - triple glazing, profile - aluminum, color - white; Stained-glass

1.5 Space planning solution

Projected object " residential complex " located at: Shymkent, located on the allotted territory of 141.2712 hectares. The following types of engineering equipment

are provided for in the building: centralized heating from a thermal power station, hot water supply, water supply, sewerage, electric lighting, telephone installation, radio communication. The level of a clean floor of the 1st floor, corresponding to the absolute mark of 345.60 on a vertical layout, is accepted as a mark of 0,000. 12 A building with dimensions in axes of 60 x16.15 m. For vertical communication of floors, one staircase of type L1 and a fire escape of type P2 are provided. Evacuation exits are provided directly through stairwells with a vestibule with a direct exit to the outside. The height of floors are 3m.

Responsibility class I.

The degree of fire resistance of the high-rise part - I,

Low part fire resistance - II.

Class of constructive fire hazard C-I.

Fire hazard of building structures - K0

1.6 Thermo technical calculation of the outer wall

According to the joint venture of the Republic of Kazakhstan 2.04-01-2017 "Construction Climatology" and the joint venture of the Republic of Kazakhstan 2.04-107-2013 "Construction Heat Engineering". "Construction heat engineering" it is necessary to determine the thickness of the insulation for the outer wall. We determine the value of the degree days of the heating period:

$$GSOP = (t_{in} - t) * z$$
(1)

Where $t_{in} = 21 \,^{\circ}\text{C}$ - temperature of internal air, $^{\circ}\text{C}$;

t = 3.1 C - average temperature of the heating period;

z = 155 days. -the duration of the heating period;

GSOP = (21-3.1) * 155 = 2864 ° C * day

The required heat transfer resistance of enclosing structures that meet sanitaryhygienic and comfortable conditions is:

$$\operatorname{Rreq} = n^* \left(t \text{ in} - t \text{ ext} \right) / \Delta tn^* \alpha_{in}$$
(2)

R req = 1*(21+17.7)/4.5 * 8.7 = 0.9

Therefore we take the Req = 2.45

The heat transfer resistance of the building envelope should be determined by the formula

Where
$$\alpha_{in} = 8.7$$

 $\alpha_{ex} = 23$
 $R0 = 1/\alpha_{in} + \delta_1/\gamma_1 + \delta_2/\gamma_2 + \delta_3/\gamma_3 + \delta_4/\gamma_4 + 1/\alpha ex$
 $R0 = 1/8.7 + 0.25/0.22 + 0.15/0.22 + 0.02/0.18 + 0.1/0.03 + 1/23$
 $R0 = 5.4 \text{ *c/BT} \ge Rtp = 2.45 \text{ M2*C/Bt}$

2 Anti seism0ic activities

Seismic hazard - seismic hazard impacts in the considered territory. Seismic hazard determined in space, in time (frequency or probability for a certain period of time) and in intensity (in points or in kinematic parameters of soil movements). The seismic hazard of construction zones should be determined with using a map of seismic generating zones of the territory of Kazakhstan, a set of maps of the general seismic zoning of the territory of the Republic Kazakhstan or according to the list of settlements located in seismic areas. List of settlements located in seismic zones Of the Republic Residential projected building is located in seismic zone, therefore, anti-seismic measures are necessary. Seismicity of the work area according to SP 2.03-30-2017, is 7 points. Clarified seismicity should be taken equal to 6 points. The residential building has a length of 61 meters, since our frame is reinforced concrete then the length should not exceed 48 meters, therefore we split the building about to one meter. Anti-seismic seams should be performed by erecting paired walls, paired frames or frames and walls. In buildings located on construction sites with a seismicity of 8 points or more, it is not allowed to provide the possibility of mutual movements of adjacent compartments due to the movement of span structures, freely lying on the structures of adjacent compartments.

3 Calculation and design

Constructive solution of the administrative building - multi-storey building with non-beamed ceilings. Spatial frame of the building solved by a frame scheme in both directions. Crossbars of multi-storey of multi-span frames is a bezel-less slab rigidly connected to the columns. Slab-column conjugation is non-drip, in the area of columns in the slab additional transverse reinforcement is installed, designed for force from punching.

Table 1 - Collection of loads		
Downloads		
Dead weight		Auto
Floor construction	Layer thickness, m density, kg / m3	Characteristic load, kg / m2
For the basement:		
Bituminous waterproofing	0.01 1400	fourteen
Extruded polystyrene foam	0.1 40	4
Cement-sand screed	0.05 1800	90
Basement total:		108
For a typical floor:		
Cement-sand screed	0.05 1800	90
Moisture resistant plywood	0.1 600	60
Glue		1.2
Oak parquet	0.015 1800	27
Sun it for a typical floor:		178.2
For flat roofs:		
Concrete slope layer	0.05 1800	90
Vapor barrier		0.015
Extruded polystyrene foam	0.15	6
Bituminous waterproofing (2 layers)	0.02 1400	28
Everything for a flat roof:	1	124.015
Wall construction	Layer thickness, m density, kg / m3	Characteristic load, kg / m
External self-supporting walls (wall height 4.4m):		
Gas block	0.3	792

Table 1 - Collection of loads

	COO			
	600 0.1			
Extruded polystyrene foam	40	17.6		
Facing brick	0.12	950.4		
Total for salf supporting wells:	1800	1760		
Total for self-supporting walls: External self-supporting walls		1780		
External self-supporting walls (parapet height 0.5m):				
	0.3			
Gas block	600	90		
Extruded polystyrene foam	0.1	2		
	40			
Facing brick	0.12	108		
	1800	108		
Total for the parapet:		200		
Partitions (height 4.4m)				
Drywall	0.0125	33		
Diywaii	600			
Soundproofing Loover	0.075	4.62		
Soundproofing Isover	14	4.02		
Deruscall	0.0125	33		
Drywall	600			
Total for partitions:		70.62		
Horizontal pressure from the ground	Characteristics			
5- · · · · · · · · · · · · · · · · · · ·	E= 300000 kg/cm	1		
	$\gamma = 1.95 t/m$			
Fine sand	$\Phi = 36 \text{ deg.}$			
	c= 0			
Payment				
Horizontal intensity of active soil	pressure at 3.3			
Ground level with respect to clean				
$1.95 \cdot 3.3 \cdot tg \ \left(45 - \frac{36}{2}\right) = 1.67$				
Horizontal intensity of active soil		q= 5t/m		
1.298 + 1.671 = 2.969				
Live loads according to EN1991				
Overlap	2 kN / m2 = 0.2 t	/ m2		
Stairs	2 kN / m2 = 0.2 t	/ m2		
Unexploited roof	0.4 kN / m2 = 0.0	04 t / m2		
	1			

Continuation of table - 1

3.1 Calculation of slab

Initial data: Plate of rectangular cross section with bottom reinforcement with dimensions b = 1000 mm, h = 220 mm; c1 = 30 mm; Concrete has a normal class C25 / 30 ($f_{ck} = 25$ MPa, $\gamma_c = 1.5$, $f_{cd} = 14.2$ MPa, $\alpha_{cc} = 0.85$). Valves of class S500 ($f_{y\kappa} = 500$ MPa, $f_{yd} = 140$ MPa, Es = 20 * (10) ^ 4 MPa, $\alpha_{cc} = 0.85$).

L.Ca	ELE	ELE	$\frac{1}{NX}$	NY,	TXY,	MX,	MY,	MXY,	QX,	QY,
se	M	M	t/m**	t/m**	t/m**	(t*m)/	(t*m)/	$(t^*m)/$	t/m	t/m
50	type	141	2	2	2	m m	m m	m (t m)	U 111	U/ 111
	1 -		2	2	2	111	111	111		
	Own									
1	weight	2647				0.5(07	6.026	14.00		
1	44	3647	-	-	-	0.5637	6.026	14.98	-	-
		9	153.2	79.34	33.30	01	83	94	5.2202	1.4240
			22	99	01				6	6
	2 -									
	Floor									
	weight									
2	44	3647	-	-	-	2.7023	1.848	4.877	-	-
		9	33.72	16.82	8.195	1	58	9	1.5019	0.5479
			76	17	66				5	1
	3 -			-			1		-	
	Walls									
	weight									
3	44	3647	_	_	_	_	-	14.59	_	_
5	++	9	112.4	57.83	27.74	3.4596	0.401	94	4.8651	0.4147
		9						94		0.4147
	4 0 1		76	85	03	1	87		4	
	4 - Soil									
	pressur									
	e									
4	44	3647	-	-	-	0.0015	-	-	-	0.0001
		9	0.030	0.016	0.002	62	0.000	0.002	0.0004	46
			17	91	2		75	16	8	
	5 - Te	mporar	y loads							
	accordin									
5	44	3647	_	-	-	2.6815	1.859	4.900	-	-
		9	32.88	16.34	8.071	6	88	81	1.5070	0.5502
		-	3	92	4	-			8	7
	6 -				·	1	1		Ŭ	,
	Snow									
	load									
6	44	3647	}		-	0.0155			0.0038	0.0017
6	44		-	-	-		-	-		0.0017
		9	0.634	0.355	0.094	42	0.008	0.017	66	84
			97	19	85		55	15		
	7 -									
	Wind									
	load X									

Table 2 - Forces from DCL

continuation of table - 2

_					1	1	0.0100	1	1	0.001.6
7	44	364	-	0.0565	-	-	0.0123	-	-	0.0016
		79	0.2710	31	1.0202	0.0749	63	0.0262	0.0272	92
			9		2	7		3	5	
	8 -					-			-	
	-									
	wind									
	load Y									
8	44	364	0.8609	0.5117	0.3023	-	_	0.0098	_	0.0010
		79	34	91	99	0.0301	0.0011	71	0.0098	24
		.,	51	<i>, , ,</i>		5	0.0011	, 1	4	2.
	0 7					5			4	
	9 - 7 -									
	Seism									
	ic X									
9 -	44	364	1.5688	2.6125	_	-	0.2399	_	_	_
7		79	6	3	2.6842	0.7249	72	0.3177	0.5067	0.0226
/		19	0	5			12			0.0220
					5	7		9	9	
	9 - S1									
	-									
	Seism									
-	ic X	0.44	1 7 400							
9 -	44	364	1.5688	2.6125	-	-	0.2399	-	-	-
S 1		79	6	3	2.6842	0.7249	72	0.3177	0.5067	0.0226
					5	7		9	9	
	11 - 19				-	-				
	11 17									
	-									
	Seism									
	ic Z									
11 -	44	364	5.6655	1.6032	4.2161	0.3575	-	0.0319	0.1713	-
19		79	9		6	76	0.0359	58	15	0.0054
17		17	,		0	70		50	15	
							5			2
	11 -									
	S1 -									
	Seism									
	ic Z									
11		264	5 6655	1 6022	10161	0.2575		0.0210	0 1712	
11 -	44	364	5.6655	1.6032	4.2161	0.3575	-	0.0319	0.1713	-
S 1		79	9		6	76	0.0359	58	15	0.0054
							5			2
		1	1	1	1	1	- -	1	1	1
Tot							9.7			
Tot al							9.7			

The bending moment $Med = 9.7 T^*M = 97 kN^* m$ acts on the plate. Determination of the cross-sectional area of the reinforcement Bending moment acting in section:

> Meds = Med-Ned * zs1 = 97 kN * m. (Ned = 0),d = h-c1 = 220 - 30 = 190 mm.

The required area of longitudinal reinforcement is determined according to:

$$Kd = \frac{d}{\sqrt{\frac{97}{b}}} = 19/9.8 = 2$$

Kd = 2 dimensionless binding factor

Determine k_s according to table B.3 for normal concrete \leq C 25/30 \rightarrow ks = 2,4

As1 = ks1 * M_{eds} / d + Ned / σ_{s1d} = 2.4 * 97 / 19+ 0/435 = 12.25 (cm) ^ 2 Accept: 5Ø18 (As1 = 12.72 (cm) ^ 2)

We determine the value of the coefficient.

 $\alpha_{eds} = Meds/fcd*b*d^2$ (3)

$$\begin{array}{c} 97*10^{3}/14.2*0.19^{2} \\ \alpha_{eds} = 0.018 \\ \alpha_{eds} \leq \alpha_{(eds, \ lim)} = 0.372 \\ 0.018 {\leq} 0.372 \end{array}$$

Calculation of checking the width of the opening of cracks normal to the longitudinal axis of the element.

Working section height

$$d = h - c_{cov} - d_{sw} - \emptyset 16 / 2 = 220 - 30 - 16/2 = 182 \text{ mm}$$

$$\rho = As1 / bd = 1272/1000 \cdot 182 = 0.006989 (0.69\%).$$

Check the width of the crack opening by a simplified method, using the data in table. 8.3 for rectangular sections reinforced with reinforcement of class St500 with $0.5\% \le \rho \le 1.0\%$, the shoulder of an internal force pair is determined:

 $z = 0.85 \ d = 0.85 \cdot 182 = 154.7 \ \mathrm{mm}$

Stresses in tensile reinforcement are determined by the formula;

$$\sigma s = Med / As1 \cdot z (11)$$

$$\sigma s = 236.15 \text{ N} / \text{mm2}$$

According to the table 8.4 dmax = 20 mm at σs = 236.15 MPa and wk, lim = 0.4 mm.

The accepted diameter $\emptyset = 18 \text{mm} \le \emptyset \text{max} = 20 \text{ mm}$, i.e. it is not necessary to check the crack opening width by calculation.

$$\omega = 0.0636$$

$$\sigma$$
sd = f_{yd} = 140 MPa

Required tensile reinforcement area:

As1 = $1/\sigma sd (\omega * b * d * f_{cd} + N_{ED}) = 1/140 (0.0636 * 1000 * 190 * 14.2) = 1225 mm^2$ We accept $5\emptyset 18(As2 = 12.72 (cm) ^ 2)$

We determine the value of the coefficient

$$\begin{aligned} \alpha_{eds} &= Meds/fcd^*b^*d^2 \\ &= 97^*10^3/14.2^*0.19^2 \\ \alpha_{eds} &= 0.018 \\ \alpha_{eds} &\leq \alpha_{(eds, \ lim)} = 0.372 \\ &= 0.018 < 0.372 \end{aligned}$$

Required tensile reinforcement area:

Ast =
$$1/\sigma_{s1d} \left(\frac{Meds}{\xi*d} + N_{ED}\right) = 1/435 \left(\frac{97*10.3}{0.96*19} + 0\right) = 12.25$$

cent 50/18(As2 - 12.72 (cm) ^ 2)

We accept $5\emptyset 18(As2 = 12.72 \text{ (cm)} \land 2)$.

4 calculation of diaphragm

4.1 Calculation of a vertical diaphragm with a height 30m

For class B10 concrete $f_{ck} = 12 \text{ MPa}$; $f_{cd} = 6.8 \text{ MPa}$; $E_b = 24000 \text{ MPa}$; $\gamma_{b2} = 0.9$, Armature class S500 Ø 10...40 c $f_{yd} = 435$ MPa; $E_s = 200000$ MPa. Coefficient of reduction of the area of reinforcement to the area of concrete; $\alpha = \frac{200}{20} =$ 8.3. Forces act in the lower section of the diaphragm, eccentricity.;

$$N = N_1 = 400 \ kH, Q = \frac{541}{2} = 270.5 \ kH; M = \frac{7159}{2} = 3579 \ kH;$$
$$e_0 = \frac{3579000}{400} = 7159 \ mm; \ e_{ol} = 0$$

The relative eccentricity is determined by the formula from [2]:

$$\delta_e = \frac{e_0}{h} \tag{4}$$

where
$$e_0$$
 - eccentricity,

h - length of reinforced concrete panel

$$\delta_e = \frac{7159}{5630} = 1.15$$

But no less relative eccentricity, which is determined by the formula from [2]:

$$\delta_{e,min} = 0.5 - 0.01(\frac{l_0}{h} + \gamma_{b2}f_{cd})$$
(5)

where l_0 - calculated length of the console,

h - length of reinforced concrete panel,

 f_{cd} - design compressive strength of concrete

$$\delta_{e,min} = 0.5 - 0.01 \left(\frac{48000}{5630} + 0.9 \times 6.8 \right) = 0.36$$

The influence of the duration of the action of the load on the deflection at the eccentricity of its action is taken into account by the coefficient according to the formula from [2]:

$$\varphi_l = 1 + \beta N_1 \frac{e_{0l} + 0.5h - a}{N(e_0 + 0.5h - a)} \tag{6}$$

where β - coefficient taken depending on the type of concrete according to table.

 N_1 - the same, from the action of constant and longed loads

$$\varphi_l = 1 + \frac{3070 - 400}{7159 + 2670} = 1.4$$

With symmetric reinforcement $\xi = \frac{400000}{0.9 \times 6.8 \times 200(5630 - 400)} = 0.07; x = 0.07 \times 5740 = 400 mm$ For the reduced I-section minus the voids.

$$b'_{f} = 200 \text{ mm}; b = 200 - 80 = 120 \text{ mm}; h'_{f} = 690 \text{ mm}; I$$
$$= \left[200 \times \frac{690^{3}}{12} + 200 \times 690 \times (3070 - 345)^{2} \right] 2$$
$$+ \frac{120(5630 - 2 \times 690)^{3}}{12} = 314 \times 10^{10} \text{ mm}^{4}$$

Minimum reinforcement determined using table [2] for flexibility:

$$\lambda = \frac{40000}{5630} = 6.5$$

 $A'_s = A_s = 0.002 \times 120 \times 5740 = 1378 \ mm^2$ Section geometrical characteristics:

$$I_s = 2 \times \frac{1378(5740 - 400)^2}{4} = 197 \times 10^8 \ mm^4$$

Conditional critical force, determined by the formula [2]:

$$N_{cr} = \frac{6.4E_b}{l_0^2} \left[\frac{I}{\varphi_l} \left(\frac{0.11}{0.1 + \delta_e / \varphi_p} + 0.1 \right) I_s E_s / E_p \right]$$
(7)

$$N_{cr} = \frac{6.4 \times 30000}{4000^2} \left[\frac{314 \times 10^{10}}{1.4} \left(\frac{0.11}{0.1 + 1.2} + 0.1 \right) + 197 \times 10^8 \times 8.3 \right]$$

= 55440 kH

The value of the coefficient η , which takes into account the influence of the deflection on the value of the eccentricity of the longitudinal force e_0 , should be determined by the formula [2]:

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}} \tag{8}$$

$$\eta = \frac{1}{1 - \frac{400}{55440}} = 1.01$$

$$e = 1.01 \times 7159 + 0.5 \times 6180 - 400 = 7478 mm$$
The required symmetric reinforcement according to the formula [2]:

$$A'_{s} = A_{s} = \frac{N[e - (1 - 0.5\xi h_{0})]}{[f_{yd}(h_{0} - a')]}$$
(9)

$$A'_{s} = A_{s} = \frac{400000[7478 + (1 - 0.5 \times 0.07)5740]}{[435(5740 - 400)]} = 420 \ mm^{2} < 1378 \ mm^{2}$$

Structural reinforcement remains $8\emptyset 16$ S500 c $A_s = 1378 mm^2$ on every face. Strength calculation of the diaphragm section inclined to the longitudinal axis.

$$Q = 214 \text{ kH}; N = 500 \text{ kH}$$

Checking the strength condition of the inclined strip between cracks according to the formula [2]:

$$\varphi_{w1} = \frac{Q}{\left[0.3(1 - \beta \times f_{cd})\gamma_{b2} \times f_{cd} \times b \times h_0\right]} \tag{10}$$

 $\varphi_{w1} = \frac{214000}{[0.3(1 - 0.01 \times 6.8)0.9 \times 6.8 \times 120 \times 5740]} = 0.18 < 1.4,$

Those sustainability is assured. Coefficient taking into account the influence of longitudinal compressive force on the bearing capacity of an inclined section[3].

400000

$$\varphi_n = 0.1 \times \frac{1}{0.9 \times 0.73 \times 120 \times 5740} = 0.11$$

Transverse force perceived by concrete according to the formula [2]:

$$Q_{b0} = \varphi_b (1 + \varphi_f + \varphi_n) \gamma_{b2} \times f_{cd} \times b \times h_0$$
⁽¹¹⁾

 $Q_{b0} = 2(1+0.11)0.9 \times 0.73 \times 120 \times \frac{5740}{2} = 500 \ kH > Q = 214 \ kH$ Consequently, transverse reinforcement is not required by design.

4.2 Calculation of the diaphragm section

Consequently, transverse reinforcement is not required by design. $l_0 = H = 3000 \text{ mm}, N = N_1 = 400 \text{ kH}, M = 0.$ $e_{a1} = \frac{4800}{600} = 6.7 \text{ mm} = e_{a2} = \frac{200}{30} = 6.7 \text{ mm}; \ \delta_e = \frac{6.7}{200} = 0.03 < \delta_{e,min}$ $= 0.5 - 0.01 \left(\frac{4800}{200} + 0.9 \times 6.8 \right) = 0.24; \ \varphi_l = 1 + \frac{100 - 30}{6.7 + 70} = 1.9; I$ $= 5630 \times \frac{200^3}{12} - 30 \times 80 \times \frac{80^3}{12} = 3990 \times 10^6 \ mm^4.$ Minimal reinforcement with flexibility $\lambda = \frac{4800}{200} = 24;$ $A'_{s} = A_{s} = 0.0025 \times 5630 \times 170 = 2610 \ mm^{2};$ $I_{s} = 2 \times \frac{2610(170 - 30)^{2}}{4} = 26 \times 10^{6} \ mm^{4};$ Conditional critical force, determined by the formula 6.4 [2]: $N_{cr} = \frac{6.4 \times 30000}{4800^2} \left[\frac{3990 \times 10^{10}}{1.9} \left(\frac{0.11}{0.1 + 0.3} + 0.1 \right) + 26 \times 10^6 \times 8.3 \right]$ $= 10600 \, kH$:

The value of the coefficient η , which takes into account the influence of the deflection on the value of the eccentricity of the longitudinal force e₀, should be determined by [4].

$$\eta = \frac{1}{1 - \frac{400}{10600}} = 1.05;$$

$$e = 1.05 \times 6.7 + 70 = 78 \text{ mm.}$$
The relative height of the compressed zone of concrete
$$\xi = \frac{400000}{0.9 \times 6.8 \times 5630 \times 170} = 0.08$$

$$A'_{s} = A_{s} = \frac{400000[78 - (1 - 0.5 \times 0.08)170]}{435 \times 140} < 0$$

According to the calculation, the reinforcement is not required, but it is assigned for structural reasons $A'_s = A_s = 2610 \ mm^2$. In addition to the previously defined aperture 8\,016 S240 c $A_s = 1608 \ mm^2$ need to add $\Delta A_s = 2610 - 1608 = 1002 \ mm^2$. With a distance between the rods S = 200 mm, the required cross-sectional area of each $A_s = 1002 \times \frac{200}{6180 - 400} = 34.5 \ mm^2$, for example 1\,08 A-III c $A_s = 50.3 \ mm^2$.

Checking the strength of the section inclined to the longitudinal axis of the panel: at random eccentricity $e_a = 6.7$ mm bending moment $M = Ne_a = 500000 \times 6.7 =$ 3350000 H * mm, by its magnitude, it is possible to determine the lateral force for a beam freely lying on the supports at;

$$l_0 = 4800 \text{ mm}: Q = \frac{4M}{l_0} = 4 \times \frac{4000000}{4800} = 1041 \text{ H.}$$
$$\varphi_n = 0.1 \times \frac{400000}{0.9 \times 0.57 \times 5540 \times 170} = 0.146$$

Transverse force perceived by concrete according to the formula [2]:

$$Q_{b0} = 2(1+0.11)0.9 \times 0.73 \times 5630 \times \frac{170}{2} = 716213 H > Q = 1041 H.$$

Transverse reinforcement parallel to the narrow panel edges is not required by design. It is only necessary to supply structural transverse reinforcement - 6 \emptyset S240 in the plane of the diaphragm with a step - S = 2 × 200 = 400 mm, i.e. diaphragm panels are reinforced with meshes - 200/400/8/3 with extreme rods - 4x3 \emptyset 16 A-III, joined by welding at the junction of the panels. Prefabricated diaphragm panels must be checked for the forces that arise during lifting, transportation and installation. The reinforcement of the stiffening diaphragm is shown in accordance with figure[4].

5 Analyzing in LIRA-SAPR:

5.1 Vertical load

There is a given condition the vertical design component of seismic does not need to be taken into account. DCL combinations are composed by combinations: $a_{gv} = 0.8 * a_g = 0.8 * 0.256 = 0.2 < 0.25g$

$$\sum_{j\geq l} \gamma_{G,j} G_{k,j} "+" \gamma_p P "+" \gamma_{Q,l} Q_{k,l} "+" \sum_{i\geq l} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(12)

$$\sum G k + P + ed + \sum \Psi Q \tag{13}$$

$$\begin{cases} \sum_{j\geq l} \gamma_{G,j} G_{k,j} + \gamma_{P} P'' + \gamma_{Q,l} \psi_{0,l} Q_{k,l} + \sum_{i>l} \gamma_{Q,i} \psi_{0,j} Q_{k,i} \\ \sum_{j\geq l} \xi_{j} \gamma_{G,j} G_{k,j} + \gamma_{P} P'' + \gamma_{Q,l} Q_{k,l} + \sum_{i>l} \gamma_{Q,i} \psi_{0,j} Q_{k,i} \end{cases}$$
(14)

Name	View	RSN 1 (6.10)		RSN 3 (6.10)	RSN 4 (6.10a)		RSN 6 (6.10b)
Own weight	Constant, G	1.35	1.35	1.35	1.35	1	1
Floor construction	Constant, G	1.35	1.35	1.35	1.35	1	1
Wall construction	Constant, G	1.35	1.35	1.35	1.35	1	1
Horizontal pressure from the ground	Constant, G	1.35	1.35	1.35	1.35	1	1
Temporary loads on EN1991	Temporary, Q	1.50	1.05	1.05	1.05	1.50	1.05
Snow load	Temporary (snow), Q	0.75	1.50	0.3	0.3	0.3	1.50
Wind load x	Temporary (wind), Q	0.90	0.90	1.50	0.90	0.2	0.2
Seismic x	Seismic, Ae	0.00	0.00	0.00	0.00	0.00	0.00
Seismic	Seismic, Ae	0.00	0.00	0.00	0.00	0.00	0.00

Table 3 - DCL combinations

Name	View	RSN 7 (6.10b)	RSN 8 (6.12b)	RSN 9 (6.12b)	RSN 10 (6.12b)	RSN 11 (6.12b)	RSN 12 (6.14b)	RSN 13 (6.16b)
Own weight	Constant, G	1.15	1.00	1.00	1.00	1.00	1.00	1.00
Floor construction	Constant, G	1.15	1.00	1.00	1.00	1.00	1.00	1.00
Wall construction	Constant, G	1.15	1.00	1.00	1.00	1.00	1.00	1.00
Horizontal pressure from the ground	Constant, G	1.15	1.00	1.00	1.00	1.00	1.00	1.00
Live loads according to EN1991		1.05	0.30	0.30	0.30	0.30	1.00	0.30
Snow load	Temporary (snow) Q	0.75	0.00	0.00	0.00	0.00	0.30	0.20
Wind load x	Temporary (wind) Q	1.50	0.00	0.00	0.00	0.00	0.00	0.00
Seismic x	Seismic, Ae	0.00	1.00	-1.00	0.30	-0.30	0.00	0.00
Seismic	Seismic, Ae	0.00	0.30	0.30	-1.00	-1.00	0.00	0.00

 Table 4 - DCL combinations

This building model is designed in accordance with the design features of the designed building. The stiffness and overlap diaphragms were modeled by finite elements of a flat shell. The design model of the building is adopted in the form of a spatial multimass discrete system with masses concentrated in nodes. Each node has 6 degrees of freedom.

The wind load acts on the building from the windward (active pressure) and windward (suction) sides. The calculated value of the intensity of the wind load.

Wind region IV,. Snow load in the III snow region:

$$s = \mu i \cdot C e \cdot C t \cdot s k \tag{15}$$

$$s = \mu i \cdot Ce \cdot Ct \cdot sk = 0.8 \cdot 1 \cdot 1 \cdot 150 = 120$$
 кг/м 2

10010-5	ma pressure we	
Ze=17.6	Ce17.1:	$We = 1.55 \cdot 770 \cdot 0.8 = 954.8 Pa = 97.36$
m	= 1.55	kg / m
Ze=	Ce30.8:	We = $1.95 \cdot 770 \cdot 0.8 = 1\ 201.2$ Pa =
33.3m	= 1.95	122.49 kg / m

Table 5 - Wind pressureWe

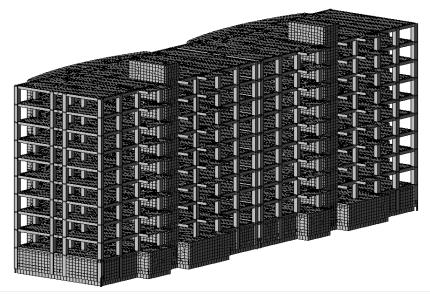


Figure 2 - The initial spatial model of the building

Average pressure under the foundation: P = N/A = 30654/840m2 = 36.4 t/m2

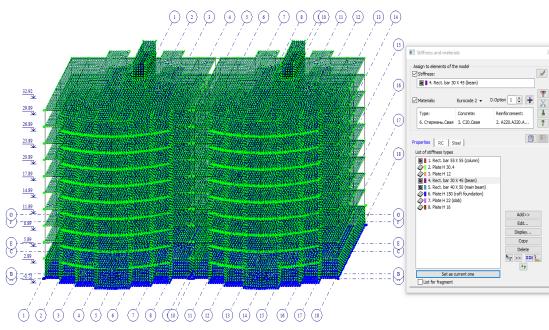
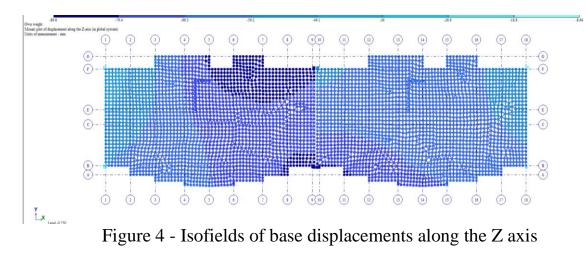
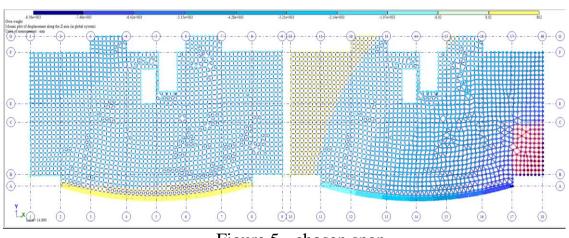



Figure 3 - The initial spatial model of the building

The first calculation file is needed to detect sediment near the foundation slab. The second calculation file is needed to identify deflections in horizontal elements. The third, fourth and fifth calculation file is required to verify compliance with the conditions of SP 2.03-30-2017 "Construction in seismic regions of the Republic of Kazakhstan". Since the city of Astana is not a seismically dangerous region, there is no need to rely on the fulfillment of the conditions of SP 2.03-30-2017.


5.2 Girdle deformations of the base:

According to Appendix B [1] SP RK 5.01-102-2013-Osnovaine;Industrial and civil one-story and multi-story buildings with full frame: the same, with the device of reinforced concrete belts or monolithic floors, as well as buildings with a monolithic structure, maximum draft base is equal to S_{max} , $\mu = 10$ cm.

Max deformation = 89.6mm<100mm condition is met

5.3 Deflection of the slab and girder

we determine the deflection in one span:

Figure 5 - chosen span

Appearance and general serviceability of the carrier structures can be violated if the calculated deflection of the beam, slab or a cantilever beam with a constant combination of influences exceeds L / 250 span. (Sn pk en 1992-1-1 + np Design of reinforced concrete structures for buildings, 7.4 Control of deflections).

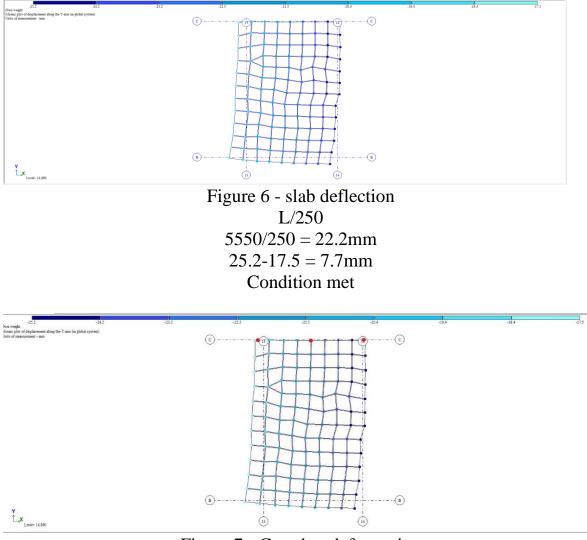
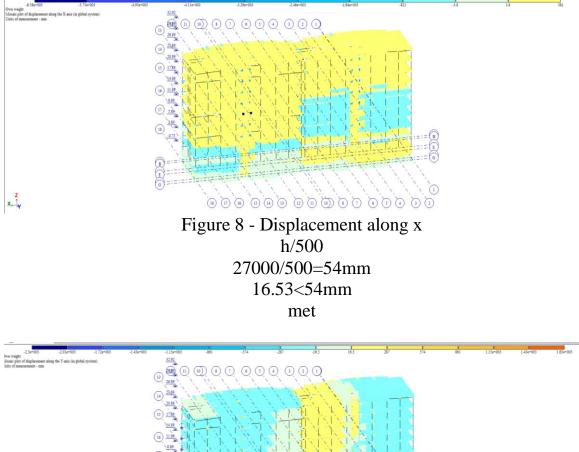



Figure 7 - Crossbar deformation

L/250 5550/250 = 22.2mm 22.3-20.4=1.9mm Condition is met

5.4 Horizontal movement from the wind

According to SNiP 2.01.07-85 (with amendment 1 1993), 1. Multi-storey buildings Any h / 500, where h is the height of multi-storey buildings, equal to the distance from the top foundation to the axis of the roof girder.



Figure 9 - Displacement along y

h/500 27000/500=54mm 23mm<54mm Condition is met

6 Organizational and technological

6.1 Determination of work volume

Construction of industrial structure foundations with the preparation of temporary excavations includes works listed.

		(Volume of work)		
(Name of processes)	(Unit of measure)	(on one base)	(in total)	
(The construction of temporary fencing)	(m)	156		
(Concrete preparation for foundations)	(m3)	3.6		
(Reinforcement installation, incl.:)		7092		
a) grids installation	(pieces/t)	4964.4		
b) frames installation	(pieces/t)	2127.6		
(Formwork installation)	(m2)	1241.8		
(Concreting of foundations)	(m3)	70.92		
(Formwork removal)	(m2)	1241.8		
(Foundation waterproofing)	(m2)	300		
(Soil compaction)	(m2)	334		
(Final land planning)	(m2)	1866		
(Removal of temporary fencing)	m	200		

Table 6 – Technological preparation

6.2 The construction of temporary fencing

Prior to the construction work necessary to perform the construction temporary fencing, fencing perimeter determined by the formula (for the pit and the trench):

$$P_{fen} = (20 + l_1) \cdot 2 + (20 + l_2) \cdot 2, (m)$$
(16)

where, l_1 , l_2 - length and width of the structure in plan, respectively (per the task), m. Distance from the axis of the building in each direction is 20 m.

So
$$P_{fen} = (20 + 36) \cdot 2 + (20 + 24) \cdot 2 = 156m$$

6.3 Concrete preparation

In soft soils for monolithic foundations is arranged concrete preparation from lean concrete. The quantity of concrete preparation for one foundation is (for raft foundation).

Name of indicators	unit	number					
Volume of concrete to be	M^3	220.8					
laid							
Duration of work shift	shift	21					
Labor intensity of work	Man-shift	101					
Production petson-shift	M ³ /person shift	4.2					
Salary per person-shift	Tg/person shift	1899.3					

Table 7 – control main	ntenance of concrete
------------------------	----------------------

We accept concrete mixer 88363B, Concrete pump BC-126.

The volume of the transported mixture is 5 m3.

KAMAZ-55111 base car.

he operational performance of the concrete pump is determined by the following formula:

$$Pe = Pt * K1 * K2 \tag{17}$$

where Pt = 80 m3 / h - technical capacity of the concrete pump, K1 = 0.5 - use of coefficient of technical performance performance

K2 = 0.65 - coefficient of reduction of concrete pump performance Pe = 80 * 0.5 * 0.65 = 26 m3 / h

$$W_p = F_p \cdot h_p, \, m^3 \tag{18}$$

where, h_p – thickness of concrete preparation, h_p =0,1m;

 F_p – area of preparation

$$F_p = a_1 \cdot b_1, m^2$$

 $F_p = 6 \cdot 6 = 36 m^2$
 $W_p = 36 \cdot 0.1 = 3.6 m^3$

where, a_1 and b_1 – the dimensions of concrete preparation, ref. foundation

section.

election of the number of auto-concrete mixers for concreting columns, diaphragms .

Pbet =
$$2 * 4 / 1.6 = 5.0 \text{ m}3 / \text{h}$$
,
N = $5.0 * 8 / 35.4 = 1.13$

We accept concreting poles, diaphragms and walls with 2 auto-concrete mixers 88363B per shift.

Selection of the number of auto concrete mixers for concreting paving slabs.

Pbet =
$$2 * 4 / 0.57 = 14.04 \text{ m}3 / \text{hour}$$
,

We accept 4 concrete mixers 69363B per shift for concreting slabs.

6.4 Reinforcement installation

Reinforcement consumption for the raft foundation:

$$G_1 = g \cdot V_{s/f}, t \tag{19}$$

where, g – reinforcement frame consumption for $1m^3$ of concrete, kg/ m^3 (100–150 kg/ m^3);

$$G_1 = 100 \cdot 70.9 = 7092 t \tag{20}$$

$$V_{S/f} = (h_f(s) \cdot 0.3 \cdot P_{base.}) + (h_f(b) \cdot 0.8 \cdot P_{base}), m^3$$
 (21)

where, $V_{s/f}$ – volume of raft foundation, m^3 ;

 $h_{f(b)}$ the height of the foundation base, ref. monolithic strip foundation; $h_{f(s)}$ the height of the structure basement, ref. monolithic strip foundation

section;

 P_{base} – total foundation length per the scheme

$$V_{S/f} = (3.9 \cdot 0.3 \cdot 36) + (0.3 \cdot 0.8 \cdot 36) = 70.92m^3$$

Reinforcement weight distribution between grid and frame conditionally accepted as: for the grid– $0,7G_1$; for the frame – $0,3G_1$.

$$0.7*7092 = 4964.4$$

 $0.3*70.92 = 2127.6$

The quantity of formworks is equal to the area of the surfaces form. It is necessary to count the area of rectangular side faces of the foundation and trapezoidal inner glass surfaces.

The scheme of foundations reinforcement, type of reinforcement structures and reinforcing bars consumption in real conditions is included in the working drawings of

the foundations. In the Course Project the amount of reinforcement work is defined as follows. Accepted the foundation reinforcement in the form of a horizontal grid at the bottom and vertical spatial frame at the entire height of the concrete preparation to the top of column footing.

6.5 Concreting of foundations

Concrete quantity in the foundations is determined by geometry formulas with the use of plan and foundation section drawn earlier for the strip foundation:

$$V_{S/f} = (h_f(s) \cdot 0.3 \cdot P_{base.}) + (h_f(b) \cdot 0.8 \cdot P_f), m^3$$
(22)

where, $V_{s/f}$ – volume of strip foundation, m^3 ;

 $h_{f(b)}$ the height of the foundation

base, ref. monolithic strip foundation section;

 $h_{f(s)}$ the height of the structure basement, ref. monolithic strip foundation section;

 P_f – total foundation length per the scheme (8 page).

 $V_{S/f} = (3.9 \cdot 0.3 \cdot 36) + (0.3 \cdot 0.8 \cdot 36) = 70.92 \ m^3$

In the course project adopted the following form of waterproofing – waterproofing coating. Painting is done by applying bituminous mastics to the surface to be painted. The number of applied layers is 2. Waterproofing is carried out in accordance with E4-3-184.

To calculate the amount of work necessary to find the surface waterproofing area.

$$S_{waterproof} = [(h_f(s) \cdot P_{exterior walls}) + ((0,25+0,3) \cdot P_{exterior walls})] = 2,m^2$$

where, $h_{f(s)}$ - the height of the structure basement, ref monolithic strip foundation section (figure.3); $P_{\text{exterior walls}}$ - perimeter of the exterior walls of the building.

$$S_{waterproof} = [(3.9.60) + ((0.25 + 0.3).60)] \cdot 2 = 300 \ m^2$$

6.6 Concrete compaction

Compaction volume is measured mainly by the area of compaction that can be found, given by the average value of the compacted.

$$v_{com} = \frac{v_{bf}}{h_c} \,\mathrm{m}^2 \tag{23}$$

 V_{bf} – backfilling volume, m^3 ; h_c – compacted layer thickness, $0.2 \div 0.4$ m. $v_{com} = \frac{167.5}{0.5} = 334 \text{ m}^2$

6.7 Final land planning

The final planning is made after the completion of all excavations and communication devices (for the pit):

 $Splanning = S_1(a) - Sbuilding, m^2$ where, $S_{1(a)}$ - cutting area of the vegetation layer of the pit (trench); $S_{building}$ - area of the building.

$$S_{planning} = 1866 - 864 = 1002 m^2$$

 $S_{building} = l_1 \cdot l_2, m^2$ (24)

where, l_1 , l_2 - length and width of the structure in plan, respectively (per the task),m.

Sbuilding= $36*24 = 864 m^2$

After finishing the construction work necessary to remove the construction temporary fencing, fencing perimeter determined by the formula (for the pit):

$$P_{fen} = (20 + l_1) \cdot 2 + (20 + l_2) \cdot 2, m, \tag{25}$$

where, l_1 , l_2 - length and width of the structure in plan, respectively (per the task),m.

Distance from the axis of the building in each direction is 20 m. $P_{fen} = (20 + 36) \cdot 2 + (20 + 24) \cdot 2 = 200 m$

6.8 Selection of the assembly crane

As an initial data in cranes selection serves the dimensions of pit for foundations and the basement of the structure, dimensions and weight of mounted structures.

In the cranes selection for installation of column foundations need to be used self–propelled jib cranes. When mounting the structure monolithic strip foundations with basement to be used column– tower crane.

Cranes selected by the technical parameters: load capacity, hook lifting height, working radius and the largest load moment.

Tower and jib rail cranes:

When choosing the crane, it is required:to determine the technical capacity of crane type;to prepare feasibility evaluation of its use;

Initial data in this case are: dimensions and space–planning decision of a building or structure; dimensions, weight and operating position of mounted element with allowance for mounting equipment; mount technology;

work performance conditions (access roads, storages, proximity of adjacent structures and utilities, soil and climatic features, structure of the underground part, etc.)

the schemes for determination of the mounting characteristics of tower cranes and jib rail cranes when mounting (a) aboveground and (b) underground structure parts. Lifting height of crane hook H_r , m is calculated using the formula:

$$H_r, = h_1 + h_2 + h_3 + h_4 \tag{26}$$

where, h_1 – the height of mounted structure from the crane base (taken equal to 0), m.

 h_2 – the height of mounted element (1,5÷2 m).

 h_3 – the height from the top level of the structure to the bottom of the cargo (0,5÷1 m).

 h_4 – the height of lifting equipment (2÷4,5 m).

So H= 0+1.75+0.5+4=1.694

In certain cases, the amount of h_4 to be selected through the catalogs of lifting equipment in relation to the mounted elements.Crane working radius during construction of underground part L_u , m, is calculated using the formula:

$$L_u = a + c + B_p + 0,5, \tag{27}$$

where, c – slope construction, m.

 $l_{1s.t}$ – length of a pit on top, m;

 $l_{2s,t}$ width of a pit on top, m,

$$c = l_{1s.t.} - l_{2s.t}$$
 (28)

$$C = (42.5 - 30.5)/2 = 6$$

where; B_p – the width of structure underground part ($l_1 + (0, 5 \cdot 2)$), m; 0,5 reserve zone width, m.

a – the distance from the crane rotation axis to the pit edge, m, is equal:

$$a = b/2 + 0.5 + r1$$

$$0.7/2 + 0.5 + 1.75 = 2.6$$

where, b – width of the crane track $(5 \div 7)$, m; 0,5 – half the width of the sleeper or sleeper unit r_1 – minimum allowable distance from the slope base to the sleeper structure, m, accepted per.

According to the basic characteristics of the directories or catalogs to be selected corresponding crane.Required carrying capacity of the crane is calculated using the formula:

$$Q_{cr} = (q_1 + q_2) \cdot \mathbf{K},\tag{29}$$

 $Q_{cr} = (435.8 + 0.6) \cdot 0.9 = 392.7$ where, q_1 – maximum weight of the mounted element, t. m_{b_1} – bucket weight (annex.1, tab.18); m_{c_2} – concrete weight (2÷2,5) t/m³. $q_1 = 435.8$ $q_2 = 0.6$

$$q_1 = m_{b1} + m_{c2}$$
 (30)

where q_2 -lifting equipment and tools weight (0,1÷0,15), t;

K- factor including the deviation of lifting device weight, taken equal $1,08\div1,12$. So $Q_{cr} = 392.7$.

Required working radius is determined by the formula:

$$L_{\rm cr}{}^{tr} = b/2 + a_1 + c, \tag{31}$$

 $L_{\rm cr}^{tr} = 0.7/2 + 1.75 + 26.6 = 28.7$

where, b – width of the crane way (track), $(5 \div 7)$, m;

 a_1 – the smallest admissible distance from the slope basis to the closest support of the crane (portable, wheel, caterpillar), for tower cranes – to a sleeper design at not bulk soil.

c – the distance from the gravity center the farthest from the crane mounted element to the protruding part of the crane (taken equal to the width of the structure $-l_2$) m.

So we have:

$$Lu = 2.6 + 6 + 37 + 0.5 = 46.1$$

Schemes determining the mounting characteristics of tower cranes and jib rail a) when mounting the aboveground parts

6.9 Selection and estimate of freight-catching devices

Selection of slings and other gripping equipment is implemented for each structural element of the building. One kind of the sling should be used for different

types, but similar in size constructions of different weight characteristics[6].

Calculation of the selected sling length and selection of ropes diameter to be carried out for the greatest structural element of the group per the weight and dimensions for the of which will be used lifting slings.Calculation of the slings is based on the breaking load and the selection of cable diameter according to the current GOST.

To be find the force (in kg) that occurs in one branch of sling:

$$S = (Q/\cos\alpha)K \tag{32}$$

where, α – vertical deviation angle of the sling, no more than 45°;

Q - weight of lifted structures (3÷5t);

m – number of sling branches (2 or 4);

K – factor of load unevenness to the sling branches (m<4 is taken, K = 1, with m \geq 4 K= 1,33),So I have :

$$S = 0.6/\cos(75^\circ) = 5.6T = 3.08$$
kg

Breaking strength in thesling branches is determined:

$$P=S S_f$$
(33)

where, S_f - safety factor, taken as $S_f = 6$ - for slings with inventory lifters, $S_f 8$ - for slings with fastening of cargo by strapping. Using tables of SES 3079–80, for steel ropes is selected cable diameter of the breaking load.

So P = 3.086 = 18.4

6.10 Design of concrete works

During the design of technology of foundations concreting should:-select the type of formwork, assign the size and determine the need for shuttering boards;determine the method of formwork and reinforcement (manually or with a crane); so I choose manually choose the method of concrete mix supply in concrete units (vertical transport) and the type of vehicle for the delivery of concrete mix to the construction site (horizontal transport); We select horizontal transport.-choose the brand of vehicles, choose a set of machines, vehicles and equipment for the implementation of concrete works complex;-carry out technological schemes of concrete works.All decisions on the concrete foundation technology in the Course Project may be taken without the

Delivery of concrete to the construction site is carried out in specialized vehicles – mixer trucks Methods of concrete supply into the concrete blocks (in this case, the form of monolithic columnar foundation) are different[7]:

It is advisable to supply concrete mix with cranes at an average intensity of concrete works of up to 20 m3 per shift. The crane is also used simultaneously in the production of reinforcing and formwork.

When there is no time limit for concreting the basement. In this case, the intensity of laying a concrete mixture we take for a concrete pump 20 m3 / h.

To installation of the formwork and reinforcement, feeding of concrete mix into the bins to be used self–propelled jib cranes – automobile, at a special chassis of motor type, pneumatic and caterpillar–mounted. When choosing a brand, it is necessary to state the required crane cargo characteristics – capacity, radius and hook height.

The required load capacity of the crane is the heaviest weight of the lifted load (formwork block–form, reinforcing mesh or frame, bin with concrete mix). Weight of bin with concrete mix M[10]:

$$M = M_e + \mathbf{E} \cdot \boldsymbol{\gamma}_{dc}, t, \tag{34}$$

where, M_e -mass of the empty bunker, t;

E – hopper capacity, m^3 ;

 $\gamma_{dc} - 2,4 \text{ t/}m^3 - \text{density of concrete mix.}$

Features of rotated bins and not rotated bins for feeding the concrete mix by valves are given in. The required radius and height of crane hook lifting is determined graphically through the drawn works schemes on a scale. Selection of crane brand is made by comparing the required parameters of the crane with cargo characteristics of self–propelled jib cranes. Generally, to perform formwork and reinforcement works, supply concrete mix is used one crane[11].

With a relatively low intensity of concreting by the crane to be adopted a mixer truck $4\div5$, m during the concreting by concrete pump $-5\div7$, m.

So *M*=325+1.25·2.4=328

Features of rotated bins and not rotated bins for feeding the concrete mix by valves are given in. The required radius and height of crane hook lifting is determined graphically through the drawn works schemes on a scale. Selection of crane brand is made by comparing the required parameters of the crane with cargo characteristics of self–propelled jib cranes. Generally, to perform formwork and reinforcement works, supply concrete mix is used one crane.

With a relatively low intensity of concreting by the crane to be adopted a mixer truck $4\div 5$, m during the concreting by concrete pump $-5\div 7$, m.

7 Determination of work labor input and crew composition

The labor input of operations is calculated based on the ENiR on respective works (ENiR E–2, E–4, E–11, E–22, etc.), performed by equipment or manually. For manual processes in the column "operator" put a dash. Total labor costs and wages are obtained by multiplying the amount of work on the standards of time and rates. The calculation is presented in tabular form (tab. 10) in the calculation of labor costs, make it only by the accepted type[17].

At the end of the table are summed up totals in columns 10, 11, 12 and 13, which are used in the future to determine the technical and economic indicators.

Data of columns 10 and 11 to be calculated. Labor costs of processes in manhours are determined by the formula:

Table B.1 - Cost calculations of machine time, labor costs and salary

The amount of the salary is determined by multiplying the volume of work on pricing. According to the accepted number of machines and composition of units recommended by ENiR is determined the team.

The planned schedule of works specifies sequence of the processes and the duration of their mutual coordination. Schedule of work production plan is recommended to be prepared as per the table. 5 given in SNIP–3.01.0185. The data in columns 1, 2, 3, 4, 6 are transferred from the calculation of labor input and machine input in [8].

The duration of the mechanized processes is determined by:

$$Pm = Nm.sh/n \cdot A, \tag{35}$$

Where, N (m.sh) – required number of machine–shift;

n – Number of machines;

A – Number of shifts per day.

Determination of the required number of machine shifts

$$N_{\rm MC} = \frac{Q}{\Pi_{\rm out}}, \qquad (36)$$

where Q - the amount of work to be performed on this operation, ha;

 P_{CM} - changeable productivity of the unit, ha / shift. Removal of top soil:

Pm=368/1*2*18662.4=3daySoil xcavation in the trench and trench access to the pit: Pm=87.86/1*2*200=3 daysFormwork installation of columnar foundation manually; Pm=11032.32/2*2*500=5.5 daysConcreting of raft foundation: Pm=56.784/1*2*2280=6 daysEvel GW

Backfilling:

Pm=2179.68/2*2*200=3 days

Soil compaction:

Pm=7265/2*2*115=5 day

Final land planning:

Pm=1540/2*2*200=2 days Duration of manual processes is determined by:

$$Pp=Q/n\cdot Am \tag{37}$$

Where, Q – labor costs (table 10), (human –day); N – Number of workers per shift. The construction of temporary fencing: Pp=441.6/2*10=2 days Soil excavation in the trench and trench access to the pit: Pp=246.01/2*5=2 days Excavation of soil underrun: Pp=19469.03/2*20=15 days Concrete preparation for foundations: Pp=692.12/2*10=3 days Reinforcement installation of columnar foundation manually: Pp=92008.16/2*20=23 days Formwork installation of columnar foundation manually : Pp=3971.64/2*20=9 days Concreting of columnar foundation:

$$Pp=68.14/2*2=2 \text{ days}$$
Formwork removal of columnar foundation;

$$Pp=420.02/2*10=9 \text{ days}$$
Foundation waterproofing:

$$Pp=670566/2*20=17 \text{ days}$$
Final land planning;

$$Pp=508.2/2*10=3 \text{ days}$$
Removal of temporary fencing;

$$Pp=331.2/2*10=2 \text{ days}$$

The number of shifts take depending on the method of manufacture of works. During mechanized method their implementation using machinery number of shifts take at least two, and the processes performed without applying machines are usually one shift[9].

Check the correctness of the graphics on the coefficient of uneven movement of workers:

$$Ku = nmax/nav, \tag{38}$$

Where, nmax- the maximum number of workers at the facility;

nav – the average number of workers:

$$nav = \Sigma Q / ,$$
 (39)

where, Q – total labor input (labor costs)

 P_{total} – total duration determined by the schedule of work.

 $nav=\Sigma Q/Ptota$ Ku=nmax/nav,

Ratio Ku should not exceed 1.5, and if it is large, the schedule should be adjusted due to a more uniform distribution of the individual processes. Sometimes it is possible to lengthen the periods of time–consuming work, reducing the number of workers, as well as move the timing of these works without changing the number of workers[16].

8 Definition of scope of work

Based on the analysis of the architectural and planning solution of the buildingIt is necessary to calculate the amount of installation work in a tabular form (Table 1). To do this, set the size of the elements, to calculate the geometric volume and mass of each of them, to determine the required number of them as a separate sample floor (span), and in the building as a whole. When designing the production of stone works in the course project, it is advisable to calculate the volume of work in a tabular form (Table 2). After compiling the table by summing up determine the total volume of masonry. Further, depending on the type of structures and technology, the calculation of the volume of work, which is reduced to compilation of "Bulletin of work volumes[15].

Table 8	- Specification	of	monolithic	reinforced	concrete	elements	on	the
standard floor								

		Sizes without Apertures, m			nt ,m3	Size aper	s tures,	of m	apreture,m3	t in the		ime of crete,
Name of element	Mark of concrete	Length	Width	Height	Volume of element	Length	Width	Height	Volume of apret	Number element	In one element	In whole floor
Raft	M25	6	0.3	3	5.4	2	0.2	2	0.8	42	5.4	226.8
foundation												

Table 9 - Bill of Quantities

		Amount		
Name of work	Unit of measurement	To capture	In the whole building	Calculation of volume of work
Brick wall	M3	28	252	7056

When calculating the amount of installation work should be considered as main installation processes, and accompanying auxiliary work (for example, welding joints of prefabricated elements, sealing joints, jointing).

The amount of work to seal joints with concrete between and the coatings are determined in meters of the seam. The number of seams with sufficient an exact degree of accuracy can be determined by the formula.

$$Lm = \Sigma p N / 2 \tag{40}$$

Where p - is the perimeter of one plate, m.

N - number of plates of this type, pcs.

To determine the amount of work on the electric weld joints length the seam is adopted depending on the type of building and the type of constructive elements. To determine the length of weld seams w / w structures in the course project can use the data, shown in[7].

Installation of the frame of a multi-storey building: installation of foundations; installation of columns; laying of crossbars; installation of floor slabs and coatings; installation of landings and marches; installation of external wall panels; electric welding of mounting joints; monolithic mounting joints; filling the joints of floor slabs and coatings; sealing and jointing of external seams of wall panels.

When compiling the "Bulletin of the scope of work" for brick buildings, it is necessary to take into account that masonry of walls is performed as a complex process, which includes the assembly of prefabricated structures, the arrangement and rearrangement of scaffolding and scaffolding, the supply of brick and mortar to the workplace. Amount of work on the masonry walls should be calculated separately for the inner and outer walls, partition walls thickness 1/4 and 1/2 bricks, the material, the thickness of the masonry walls pits and ducts.

The complexity of the masonry of the outer walls varies in the following types: simple - with complicated parts up to 10% of the wall area; walls of medium complexity - with complicated parts up to 20% of the wall area; particularly complex walls - with complicated parts that occupy more than 40% of the wall area. The complicated parts of the masonry include pilasters, cornices, girdles, bay windows, loggias, niches, etc. made of brick or various ceramic blocks. The volume of masonry walls is calculated by the formula.

$$\mathbf{V} = (\mathbf{F} - \mathbf{P}) \mathbf{b} \tag{41}$$

Where F - the area of the walls, m2.

P - the area of window and door openings along the outer contour of the boxes, m2.

bin - wall thickness, m.

The volume of mortar for masonry depends on the thickness and complexity of the walls and partitions. To calculate the volume of mortar when building brick external and internal walls, as well as various thicknesses of partitions, it is advisable to use the data given in the table .

V=(6804-768)=4992.6

When erecting monolithic structures, the main processes that form the bill of quantities are: installation, disassembly and rearrangement of formwork of walls, columns, ceilings; installation of reinforcing frames and grids; welding and knitting of joints of fittings; reception, supply and laying of concrete mix.

When calculating the volume of the device of monolithic structures, the formwork area is established as a result of determining the area of the side surfaces of

The choice of load-gripping devices and rigging equipment is made using reference literature and is formatted as [1].

During the design of monolithic buildings, in accordance with the chosen methods of erection, the choice of a crane for the installation of formwork and reinforcement is made, the choice of the formwork system with the compilation Table. 6 and schemes of layout of panels in enlarged formwork modules on a fragment of a wall, columns, overlapping, the equipment for submission, stacking and consolidation of a concrete mix is determined [2].

1 abic 10 - 1	Table 10 - The sheet of load-gripping devices and figging equipment									
Name	Mark	Amount	Purpose							
i vuille	murk	7 mioune	i dipose							
load-	RDK-250	2	Lifting and assembling							
		-	6 6							
gripping devices			Prefabricated wall							
(crane)										

Table 10 - The sheet of load-gripping devices and rigging equipment

Table 11 - Specification of formwork

Type of shield(formwork)		Size,mm		Number shields(formwork)	of
sillelu(lollilwolk)		Length	width	smeids(tormwork)	
large j formwork, (linear universal boards)	panel and	3000	300	86*2=172	

8.1 Calculation of the turnover of scaffolding and formwork

We define the formwork by the following formula[8]:

$$z = \frac{\sum_{1}^{a} m}{n - 1 + \frac{A * tb}{K}} \tag{42}$$

where $\sum_{1}^{a} m$ - total number of seizures on all tiers constructions.

n - the number of simple processes;

- A the number of shifts per day;
- t_b time of aging of concrete in the formwork (1-6 days);
- K the duration of the formwork installation on one clamp (K= 1 is assumed).

The required number of sets of formwork is determined from the expression: sets.

$$a = n + 1 + \frac{A \cdot t_{\delta}}{K}$$

$$z = \frac{20}{2 - 1 + \frac{2 \cdot 6}{1}} = 1.5$$
$$a = 2 + 1 + \frac{2 \cdot 6}{1} = 15$$

Table 12 - List of mechanisms, equipment and devices for transportation, laying and compaction of concrete mixture

Name (mark)	Appointment	Main parametrs	Required quantity
MAZ500	Dum truck	Transfereng 172 sheilds	2
Vibrator	Max volume: 7 m3 Max mass of concrete: 11910kg Model code: 3299	Compaction of concrete of foundation	8
RDK-250	Tower crane	Transferring material and prefabricated walls	2
ABN 581532	Concrete mixer	Receiving concrete mixing and supply it	1

8.2 Determination of labor volume and cost of exposure

The assignment of specific ways and means to carry out the bot allows you to specify the composition and scope of work and go to the their specific labor intensity on the projected facility. The labor intensity is calculated using the data in Table. 1 to 4 and norms of time for work in accordance with ENIR [3, 4].

The calculation is carried out in the form of "Statement of labor costs, machine time-costs and labor costs "(Table 8); when compiling a statement the composition of the workers' links according to the ENIR is determined.

				Rate of tin	ne
Name of process	Unit of measurement	Volume of work	Rationale of ENIR	Workers	Driver
Concreting	M3	619.2		16	8

Table 13 – The cost labor time and labor cost

Labor input		Link con	position to	Cost value		
		ENIR				
Workers		Profession				
Person-	Driver-hour	rank	Amount	Unit rate	Total cost	
hour						
5000	5000	Low	10	5000	50000	

Table 14 - The cost labor time and labor cost

9 Calculation of required parameters of mounting crane

The choice of the type of cranes depends on: the configuration and size of the structure; overall dimensions, degree of enlargement, mass, and location of the structures to be mounted; adopted method of installation[6].

Tower cranes. The choice of mounting crane is made by finding the three main characteristics: - the required capacity (mounting weight), height of the hook (installation height) and boom.

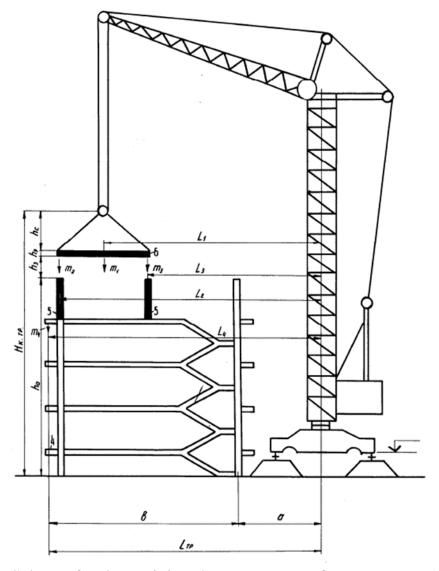


Figure 10 - Scheme for determining the parameters of tower cranes (RDK-250)

When assembling structures of multi-storey buildings with tower cranes, the required hook reach (m) is determined from the installation condition of the element farthest from the crane axis[9].

$$Ltp = a + b \tag{43}$$

Where a is the distance from the axis of rotation of the crane to the nearest wall of the building, providing the dimension for the lower part of the crane during its rotation, m;

b - distance from the wall closest to the crane to the center of gravity of the most distant element (or building width), m.

The required height of the hook H.tr (m) is determined from the condition of lifting the highest positioned element according.

The crane lifting capacity is taken according to the largest mounting mass of the element according to the formula (3), while checking that the required load moment corresponds to the load moment of the selected crane.

Required load moment Mtr is the largest product of the mounting weight of the element Qe and the corresponding hook reach L (m).

After determining the design parameters of the mounting cranes according to their technical characteristics, such machines are selected whose operating parameters satisfy the design ones, equal to them or slightly surpass them.

The type of mounting crane is selected in two stages. First accept technically acceptable options, and then, comparing the technical and economic indicators, choose the best option.Hook lifting height[8].

$$H = h0 + hzap + he + hp \tag{44}$$

Where h0 is the mark on which the structure is installed, m.

hzak - Height reserve - the minimum distance between the mounting level and the bottom of the mounted element (usually $0.4 \dots 1.0 \text{ m}$), m;

he - Height (or thickness) of the element in the installation position, m.

hpr - Sling height in the working position from the top of the mounted element to the crane hook (laying of the slings from 1: 1 to 1: 2, height within 1 ... 4 m),

So H= 1+1+3+1.5=5.5

Departure of an arrow of the crane (crane hook)

$$L = a / 2 + b + c + 1$$
 (45)

Where a is the width of the crane runway, m;

b - Distance from the head of the crane runway nearest to the building to the building, m;

c - Building width, m;

1 m - The minimum stock for acceptance of the element without tightening, taking into account safe installation.

Required crane capacity

$$Q = q1 + q2 \tag{46}$$

Where q_1 - is the maximum mass of the lifted load, t.

 Q_1 - Traverse mass or other construction device, t.

 q_2 - Lifting equipment and tools weight (0,1÷0,15), t.

$$Q_{cr} = (435.8 + 0.6) = 436.4$$

$$q_1 = 435.8$$

 $q_2 = 0.6$

The cost of installation of units of production according to the formula.

$$Ced = Cmk/P0 \tag{47}$$

Where C mk - The cost of installation of the entire volume of building structures. P 0 - The total volume of mounted designs, t; m3.

The duration of the complex process (specialized stream) of installation of structures is determined by the schedules of the work, or from the laws of in-line production.

The duration of the specialized stream of installation of structures of a multistorey building is found from the following expression.

$$\mathbf{T} = \mathbf{Nmk} + \sum Ti + \mathbf{Tb} \tag{48}$$

Where N - is the number of floors.

m - The number of captures.

K - the rhythm of the flow.

T - The duration of technological auxiliary processes, for the implementation of which it is necessary to interrupt the leading process - installation of structures T and - the duration of the technological support processes carried out after the installation of building structures[11].

$$T = 9*1*1+5+2=16$$

The complexity of the unit of installation of prefabricated structures, man-h / t or man-h / m, is determined by the formula,

$$Q = Qmk/P0 \tag{49}$$

Where Q m k - the total complexity of installation of prefabricated structures, man-hours;

$$Q = 330/226.8 = 1.45$$

The production of workers per shift, t or m3, is

$$B = P0*tc/Qmkh$$
(50)

Where tc - the duration of the shift, h B= 800*8/330*9=237.03 Production of cranes per shift, t or m3,

$$Bk=P0/Ty$$
(51)

Where Ty - the duration of installation of structures, shifts. "

Bk=800/8=100

The economic efficiency of the adopted version of the installation work can be determined by the difference in the costs:

$$\Im = (C1 - C2) + E(K1 - K2) \tag{52}$$

Where Ci - C2 is the difference in the cost of a unit of work of the compared options, E is the normative efficiency coefficient,

Ki — K2 is the difference in specific capital investments for the compared options.

Specific capital investments for mounting cranes are determined by the formula.

$$\mathbf{K} = \sum \frac{Sj}{Ndj * qmj} \tag{53}$$

Where Sj - the estimated cost of the crane the directive number of changes in crane operation per year;

Mj - the volume of work performed by the crane per shift, t or m3. $K = \sum Sj/(Ndj*qmj) = 34.8$

Indicators	Value indicators for options	Relative value for variant %
The given unit of	0.893	0.00893
cost m3		
Specific labor	1.45	0.0145
input m3		
Duration of work	16	0.16
shifts		
Total	18.1	0.18.1

m 11 1 <i>6</i>	T 1 · 1	1	•	• • •
Table 15 -	Technical	and	economic	indicators
1 4010 10	I vviiiivui	and	v vononne	marvatory

Table 16 - Costing labor, machine time and wages

							Rate of tin	ne
Name	of	Unit	of	Volume	of	Rationale		
process		measuremen	nt	work		of ENIR	Workers	Driver
Concreting		M3		619.2			16	8

Labor input		Link con ENIR	nposition to	Cost value		
Workers Person- hour	Driver-hour	Profession rank	Amount	Unit rate	Total cost	
5000	5000	Low	10	5000	50000	

Table 17 - Costing labor, machine time and wages

Section 5. Schedule of work. The schedule of work is compiled using the data of costing labor.

The duration of manual processes is determined by dividing the labor costs (person-h) by the accepted composition of the link (person). The duration of mechanized processes is determined by dividing the cost of machine time (mash.-h) by the number of leading machines on the capture. Schedule

sets from the conditions of an 8-hour working day using machines and mechanisms not less than two shifts.

When constructing the schedule, it is necessary to take into account the time of technological breaks associated with the set of concrete strength before demolition and subsequent loading. The form of the schedule is given in table. 12.

10 Determination of the composition of the integrated team

The number of workers in the integrated brigade will be determined by the formula[17]:

$$N = \frac{Q}{K \cdot m \cdot p} \tag{54}$$

Where Q - labor intensity of this type of work on the stage, people;

K - cyclic change module; m - number of seizures on the tier;

p - percentage of overfulfillment of the norms of working-out.

$$N = \frac{Q}{K \cdot m \cdot p} = 22.2$$

Table 18 - Statement of need for tools, equipment and fixtures										
Name (mark)	Appointment	Main parametrs	Required quantity							
MAZ500	Dum truck	TRANSFERENG 172 sheilds	2							
Vibrator	Max volume: 7 m3 Max mass of concrete: 11910kg Model code: 3299	Compactionofconcreteoffoundation	8							
Tower crane	RDK-250	Transferring material and prefabricated walls	2							
Concrete mixer	ABN 581532	Receiving concrete mixing and supply it	1							

Table 18 - Statement of need for tools, equipment and fixtures

Table 19 - Statement of need for materials, semi-finished products and structures

)	
Name of	mark	quantity	total
material			
1	2	3	4
concrete	M25	5.4	232.2
Brick	M3	23	252.2

1 4010 20	Quanty CO	ntrol of work			
		Instrument			Technical criteria
	5	and method of	Frequency of	Responsible	for quality
processes to be	control	control	control	for control	control
controlled					
1	2	3	4	5	6
					According to
Manual installation					According to technical criteria
of reinforcement		Vigually	Controlling in	Site engineer	
and frames	Kennorenig	•	every grip	Site engineer	work is 97%
		CONTION	every grip		perfect and 3%
					failure
					lanule
Constructio					
n of scaffolding	Ũ	2	• •	-	The scaffolding
11 0	11	control	joints are		100% fitted
formwork	formwork		controlled		correctly
		Controlled by	The sizes of wall		
Installation of	Formwork	level	are controlled in	Site engineer	The formworks
formwork for wall	installation	instrument and	every formwork		are fitted 98%
		inspection			correct
Formwork	Removing	Visually	Formworks are	Site engineer	Removed 95%
dismantling of	of formwork	control	removed		correct
walls			simultaneously		
		Controlled by	Formworks are		
Installation of	Installation	level	installed in zero	Site engineer	The formworks
formwork for slab	of formwork	instrument and	angle level and	C	are fitted 98%
		inspection	every floor		correct
Formwork	Removing	Visually	Formworks are	Site engineer	Removed 97%
dismantling of slab	of formwork	control	removed	C	correct
			simultaneously		
			*		According to
	Concrete		Controlled in	Site engineer	technical criteria
Preparation of	preparation	Sampling with		U	the quality of
concrete	1 1	1 0	period		concrete is 96%
			Ł		perfect and 4%
					failure
Conomata 1-1'	Dalizzare	Comparata	Controllad		070/
Concrete delivery		Concrete		Site engineer	
by concrete pumps	concrete	pump	every delivery		delivery
			period		
. .	a i			a	070
	0		Concrete pouring	Site engineer	
	pouring	1 1	controlled		pouring
structure		vibrator	periodically		

Table 20 - Quality control of work

11 Safety measures

In the production of reinforced concrete works, it is necessary to strictly comply with the requirements of SNiP 1-85-2001 "Occupational Health and Safety in Construction" and observe certain rules:

- Workers must be provided with safe access to the work.
- Guardrails must be put in place as work progresses.

• Access ladders must be properly erected tied and project at least 1 metre above the landing platform.

- Ladders or an access scaffold must be used for access.
- Equipment must be in good order before use.

The formwork used for the erection of monolithic reinforced concrete structures must be manufactured and applied in accordance with the PPR approved in accordance with the established procedure.

Formwork should be developed after the concrete has reached the specified strength with the permission of the foreman.

The preparation and processing of the reinforcement must be carried out in specially designated places for this purpose.

The given reinforcing mesh is lowered over the place of its laying not lower than by 80 cm and only then the reinforcement workers direct it to the design position.

Walking on reinforcing elements is allowed only on the gangways of a width of 30-40 cm.

When cranes are working, people are not allowed to stay in the zone of operation. Do not carry the load over workers.

It is forbidden to swing a suspended cargo and leave it without supervision, as well as to conduct installation with a wind of more than 6 points.

It is prohibited to operate the boom crane directly under the wires of operating power lines of any voltage.

The descent of workers into the pit or trench is allowed only on the stairs.

If cracks or trenches appear in the slopes of the trench, which threaten the collapse, it is necessary to fix the walls or reduce the steepness of the slope before the work begins.

Welding transformers and lighting fixtures must only be connected to an electrician on duty.

For a temporary power grid on a construction site, an insulated wire should be used and suspended on reliable supports at a height of at least 2.5 m above the workplace, 3 m above the aisles and 5 m above the thoroughfares. At an altitude of at least 2.5 m from the ground, the electrical wires must be enclosed in cords or boxes.

Welding transformer housings and welded products are grounded in accordance with SNiP 1-85-2001 n 6.15.

Welding transformers are only included in the network with the use of closed types[18].

When preparing a concrete mixture with the use of chemical additives, measures should be taken to prevent skin burns and damage to the eyes of workers.

Installation, dismantling and repair of concrete trucks, as well as removal of delayed concrete from them is allowed only after reducing the pressure to atmospheric.

Workers with electric vibrators are allowed to work only after medical conclusion. Medical re-examination is carried out regularly and on time.

Concrete workers are provided with overalls, including shoes and vibrationproof dielectric gloves.

The vibrator housings are reliably grounded, and the wires feeding the vibrators are enclosed in rubber pins.

When compacting the concrete mix, the electric vibrator must not be moved by current-carrying hoses, and at the end it must be switched off.

After every 30-35 minutes of operation, the vibrators are switched off for 5-7 minutes for cooling.

Prior to the commencement of excavation work at the locations of existing underground utilities, measures for safe working conditions should be developed and agreed with the organizations operating these utilities, and the location of the underground utilities in the area is indicated by appropriate signs or inscriptions.

Excavation work in the area of existing underground utilities should be carried out under the direct supervision of the superintendent or foreman, and in the security zone of live cables or an existing gas pipeline, in addition, under the supervision of electric or gas facilities. If explosive materials are discovered, excavation work in these places should be stopped immediately before obtaining permission from the relevant authorities[9].

Before starting excavation work in areas with possible pathogenic contamination of the soil (landfill, cattle burial grounds, cemeteries, etc.), permission of the State Sanitary Inspection is required.

Excavations and trenches developed on the streets, driveways, in the yards of populated areas, as well as places where people or vehicles are moving, must be fenced with a protective fence, taking into account the requirements of GOST 23407-78. It is necessary to install warning signs and signs on the fence, and at night time - signal lighting. The places for people to pass through the trenches should be equipped with transitional bridges illuminated at night.

Soil extracted from the pit or trench should be placed at a distance of at least 0.5 m from the edge of the recess.

Digging in pits and trenches is not permitted. Boulders and stones, as well as peeling soil found on the slopes, must be removed. Digging pits and trenches with vertical walls without fastenings in non-rocky and unfrozen soils above the groundwater level and in the absence of underground structures near it is allowed to a depth of not more than, m:

1,0 - in bulk, sandy and coarse soil;

1.25 - in sandy loam;

1.50 - in loams and clays.

Digging pits and trenches with slopes without fastenings in non-rocky soils above the groundwater level (taking into account capillary rise) or in soils drained using artificial water reduction is allowed at the depth of excavation and the steepness of the slopes according to Table. 4.

The steepness of the slopes of the recesses with a depth of more than 5 m in all cases and a depth of less than 5 m under hydrogeological conditions and soil types not provided for in clause 9.10 and table. 4 should be installed by the project.

If it is impossible to use inventory fastenings of the walls of foundation pits or trenches, fastenings made according to individual projects approved in the established order should be used. When installing the fasteners, their upper part should protrude at least 15 cm above the edge of the recess. It is necessary to install fasteners in the direction from top to bottom as the excavation is developed to a depth of not more than 0.5 m.

Disassembly of the fasteners should be made in the direction from the bottom up as the backfilling of the recess. The development of trenches with vertical walls without fastening by rotary and trench excavators in cohesive soils (loams, clays) is allowed to a depth of not more than 3 m. In places where workers are required to stay, trenches or slopes should be fixed.

Work in pits and trenches with slopes that have undergone wetting is allowed only after a thorough inspection by the manufacturer (master) of the condition of the slopes and the collapse of unstable soil in places where "peaks" or cracks (delaminations) are found.

11.1 Concrete and reinforced concrete work

The formwork used for the construction of monolithic reinforced concrete structures must be manufactured and applied in accordance with the work design approved in the established manner. When installing formwork elements in several tiers, each subsequent tier should be installed only after the lower tier has been fixed.

Placing equipment and materials on the formwork that is not provided for by the work project, as well as the presence of people not directly involved in the production of work on the formwork flooring, is not allowed. The dismantling of the formwork should be carried out (after the concrete reaches the specified strength) with the permission of the manufacturer, and especially critical structures (according to the list established by the project) - with the permission of the chief engineer. Harvesting and processing of valves must be carried out in specially designed and suitably equipped places[19].

When performing work on the preparation of valves, it is necessary:enclose places intended for unwinding coils (coils) and straightening reinforcement;

when cutting reinforcing rods by machine tools into segments of less than 0.3 m in length, use devices that prevent their expansion; to protect the workplace when processing reinforcing bars that protrude beyond the dimensions of the workbench, and for bilateral workbenches, in addition, divide the workbench in the middle with a longitudinal metal safety net at least 1 m high; fold the prepared reinforcement in specially designated places;

Cover with shields the end parts of the reinforcing rods in places of common passages having a width of less than 1 m.

When performing work on tensioning the reinforcement, it is necessary: to install protective barriers at least 1.8 m high in places of passage of workers; equip devices for tensioning valves with an alarm that is activated when the drive of the tensioner is turned on; prevent people from staying at a distance closer than 1 m from reinforcing bars heated by electric current.

The descent of workers into chambers heated by steam is allowed after turning off the steam supply, as well as cooling the chamber and the materials and products inside it to 40 $^{\circ}$ C.When preparing a concrete mixture using chemical additives, measures must be taken to prevent skin burns and eye damage to workers.

Bins (buckets) for concrete mix must meet GOST 21807. Moving a loaded or empty hopper is allowed only with the shutter closed.

Installation, dismantling and repair of concrete pipelines, as well as removal of delayed concrete (plugs) from them, is allowed only after reducing the pressure to atmospheric.

During cleaning (testing, purging) of concrete pipelines with compressed air, workers not directly involved in these operations should be removed from the concrete piping by a distance of at least 10 m.Every day before starting to lay concrete in the formwork, it is necessary to check the condition of the packaging, formwork and screed. Detected malfunctions should be rectified immediately.

11.2 Installation work

At the site (capture), where installation work is being carried out, it is not allowed to carry out other work and to find unauthorized persons. When erecting buildings and structures, it is forbidden to perform work related to finding people in one section (grab, section) on floors (tiers) over which moving, installing and temporarily securing prefabricated structures or equipment are carried out.

When erecting single-section buildings or structures, the simultaneous installation and other construction work on different floors (tiers) is allowed if there are reliable (justified by the appropriate calculation for the impact loads) interfloor ceilings by written order of the chief engineer after the implementation of measures ensuring the safe performance of work, and subject to being directly at the place of work of specially designated persons responsible for the safe installation Ms. and the movement of goods by cranes, as well as for monitoring the implementation by the crane operator, slinger and signalman of production instructions for labor protection.

Ways of slinging structural elements and equipment should ensure their supply to the installation site in a position close to the design[20].

It is forbidden to lift prefabricated reinforced concrete structures that do not have mounting loops or marks that ensure their correct slinging and installation.Cleaning of structural elements to be mounted from dirt and ice should be done before they rise. Slinging of structures and equipment should be carried out with load-gripping means meeting the requirements of clauses 7.4.4, 7.4.5 SNiP 12-03 and providing the possibility of remote distribution from the working horizon in cases when the height to the lock of the load-gripping means exceeds 2 m.

Elements of mounted structures or equipment during movement must be prevented from swaying and rotation by flexible guy wires.

People are not allowed to stay on structural elements and equipment during their lifting or moving.During breaks in the work, it is not allowed to leave the raised structural elements and equipment on weight.

To move installers from one structure to another, inventory ladders, transition bridges and ladders with a fence should be used. The installers are not allowed to go over the installed structures and their elements (trusses, crossbars, etc.), on which it is impossible to install a fence that provides the passage width in accordance with clause 6.2.19 of SNiP 12-03, without the use of special safety devices (reliably a rope stretched along the truss or crossbar to secure the carabiner of the safety belt, etc.).

Elements of structures or equipment installed in the design position must be fixed so that their stability and geometric immutability are ensured.Distribution of structural elements and equipment installed in the design position should be made after their permanent or temporary reliable fixation. It is not allowed to move installed elements of structures or equipment after their distribution, with the exception of cases justified by PPR.

Installation of structures of each subsequent tier (section) of a building or structure should be carried out only after reliable fastening of all elements of the previous tier (section) according to the design.

Mounted metal stairs with a height of more than 5 m must meet the requirements of clause 6.2.19 of SNiP 12-03 or be fenced with metal arches with vertical ties and securely attached to the structure or equipment. Workers are allowed to climb stairs to a height of more than 10 m if the stairs are equipped with rest areas at least every 10 m in height.

When installing frame buildings, it is allowed to install a subsequent tier of the frame only after the installation of building envelopes or temporary fences on the previous tier.

During the installation of structures, buildings or structures, installers must be on previously installed and securely fixed structures or scaffolds.Installation of flights of stairs and platforms of buildings (structures), as well as cargo-passenger building lifts (elevators) should be carried out simultaneously with the installation of building structures. On mounted staircases, fences should be installed immediately.

On the capture, in which the building structure is being installed, it is not allowed to use the passenger-and-freight elevator (elevator) directly during the movement of structural elements.

When dismantling structures and equipment, the requirements for installation work should be followed.Simultaneous dismantling of structures or dismantling of equipment in two or more tiers along one vertical is not allowed.

CONCLUSION

The main purpose of architecture has always been to create the living environment necessary for human existence, the nature and the comfort of which was determined by the level of development of society, its culture, achievements of science and technology. Extension relevance the construction of Wedding Palaces is due to a number of features social development. These include: an increase in the population in cities, an increase in its cultural level, civil responsibility and material security. The diploma work consists of the following sections: architectural construction, design and construction, construction technology production, economic part.

In the architectural and construction section, decisions on the general plan are justified object, according to the space-planning and constructive solution, according to engineering equipment. In this section, heat engineering calculation of external walls and covering slabs. In the design and construction section, the design scheme of one block, compiled a collection of loads and determined the forces in the supporting structures with using the PC "Lira-Sapr 2016".

In the section of construction production technology, methods are defined construction production, a construction plan has been developed, as well as a calendar schedule. The accepted work methods provide for a comprehensive mechanization and use of high-performance construction machines, ensuring high quality of work and labor safety, flow and uninterrupted construction process. The rationality of the choice of methods of production of work, complex mechanization, technological sequence and the relationship of individual types of work are reflected by technical and economic indicators. The construction master plan was developed in compliance with the requirements of Eurocode.

The economy section includes the data of the consolidated estimate calculation construction costs. This project is designed for the convenience and comfort of our children and youths. An effective school facility is responsive to the changing programs of educational delivery, and at a minimum should provide a physical environment that is comfortable, safe, secure, accessible, well illuminated, well ventilated, and aesthetically pleasing. The school facility consists of not only the physical structure and the variety of building systems, such as mechanical, plumbing, electrical and power, telecommunications, security, and fire suppression systems.

LIST OF USED LITERATURE

1 SN RK 3.02-07.2014 "Public buildings and structures."

2 SP RK 3.01-101-2013 "Urban planning. Planning and development of urban and rural settlements."

3 SN RK 2.02-01-2014 "Fire safety of buildings and structures." 4 SN RK

2 04-02-2011 "Protection against noise".

5 SN RK 2.04-01-2011 "Natural and artificial lighting."

6 SP RK 5.01-102-2013 "Foundations of buildings and structures".

7 CH RK 3.01-01-2013 "Urban planning. Planning and development of urban and rural settlements."

8 SP RK 2.03-30-2017 "Construction in seismic zones."

9 NTP RK 08-01.1-2012 "Design of earthquake-resistant buildings and structures. Part. General Provisions Seismic effects. "

10 SP RK 2.04-01-2017 "Construction climatology".

11 SP RK 2.04-107-2013 "Construction heat engineering".

12 NTP RK 02-01-1.1-2011 "Design of concrete and reinforced concrete structures made of heavy concrete without prestressing reinforcement".

13 NTP RK 02-01-1.4-2011 "Designing of prefabricated, precast-monolithic and monolithic reinforced concrete structures".

14 Lyashenko T.A. Guidelines for the implementation of the course project -

Tikhoretsk: FSBEI HPE RGUPS, 2016 - 52 p.

15 Dzhumagaliev T.K., Kalpenova Z.D. The technology of construction of the underground part of buildings and structures. The task and guidelines for the implementation of the course project in the discipline "Technology of building production-1" for full-time and part-time students of specialties 5B072900 - Construction" and 5B042000 - "Architecture". - Almaty: KazGASA, 2013 - 45 p. 16 ENiR E2-1 "Earthworks".

17 ENiR E4-1 "Installation of prefabricated and installation of monolithic reinforced concrete structures".

18 Technology of building production: a manual for students of specialties 1-70 02 01 "Industrial and civil construction", 1-70 02 02 "Expertise and property management" specialties 1-27 01 01-17 "Economics and organization of production (construction)" / S.N. Leonovich , V.N. Chernoivan . - Minks :BNTU, 2015 .-- 505 s.

19 NTP RK 01-01-3.1 (4.1) -2012 "Loads and impacts on buildings. Snow load. Wind impacts. " 20 SN RK 1.03-05-2011 "Labor protection and safety measures in construction".20 NTP RK 02-01-1.1-2011 "Design of concrete and reinforced concrete structures made of heavy concrete without prestressing reinforcement".

Appendex A

IMPORTANT. Geometrically unstable system at node 57986 along direction UZ with residual 100% (0 applied against -90.1717 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 30501 along direction UX with residual 100% (0 applied against 72.8023 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 30312 along direction UX with residual 100% (0 applied against 72.731 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 57986 along direction UY with residual 100% (0 applied against 63.2714 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 57986 along direction UX with residual 100% (0 applied against 26.9003 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4744 along direction UZ with residual 100% (0 applied against -11.8713 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4744 along direction UY with residual 100% (0 applied against 8.75726 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4735 along direction UZ with residual 100% (0 applied against 6.23351 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4735 along direction UX with residual 100% (0 applied against -6.19246 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 25204 along direction UZ with residual 100% (0 applied against 6.1782 obtained). Restraint is imposed. IMPORTANT. Only 10 messages about geometrical unstability with max residual are displayed. Altogether such messages 2472. Unstability is found in directions X, Y, Z, UX, UY, UZ Nodes with unknowns that cause geometrically unstable system are coloured red on the model IMPORTANT. Residual of solution at node 62805 along direction Y. Residual 100% (0.000258745 applied against -0.000182295 obtained) IMPORTANT. Residual of solution at node 46637 along direction UZ. Residual 100% (0 applied against 2.13768e-005 obtained) IMPORTANT. Residual of solution at node 46769 along direction UZ. Residual 100% (0 applied against 2.09648e-005 obtained) IMPORTANT. Residual of solution at node 52218 along direction UY. Residual 100% (0 applied against -2.01369e-005 obtained) IMPORTANT. Residual of solution at node 57813 along direction UZ. Residual 100% (0 applied against 2.00072e-005 obtained) IMPORTANT. Residual of solution at node 57803 along direction UZ. Residual 100% (0 applied against -1.91187e-005 obtained) IMPORTANT. Residual of solution at node 52217 along direction UY. Residual 100% (0 applied against -1.83415e-005 obtained) IMPORTANT. Residual of solution at node 52297 along direction UY. Residual 100% (0 applied against -1.64699e-005 obtained)

IMPORTANT. Residual of solution at node 35899 along direction UZ. Residual 100% (0 applied against 1.60778e-005 obtained) IMPORTANT. Residual of solution at node 52199 along direction UY. Residual 100% (0 applied against -1.5511e-005 obtained) IMPORTANT. Only 10 max residuals are displayed. Altogether residuals 424. Residuals are found along directions X, Y, UX, UY, UZ IMPORTANT. Buckling at node 62797 along direction Y. Nodes with buckling are coloured red on the model 18:44 Calculating natural vibrations 18:44 Iteration No.1 18:44 Iteration No.2 0 shapes obtained (among them 0 in specified range) 18:44 Iteration No.3 4 shapes obtained (among them 4 in specified range) 18:44 Iteration No.4 4 shapes obtained (among them 4 in specified range) 18:44 Iteration No.5 5 shapes obtained (among them 5 in specified range) 18:44 Iteration No.6 9 shapes obtained (among them 8 in specified range) 18:44 Iteration No.7 10 shapes obtained (among them 9 in specified range) 18:44 Iteration No.8 12 shapes obtained (among them 11 in specified range) 18:44 Iteration No.9 14 shapes obtained (among them 13 in specified range) 18:44 Iteration No.10 16 shapes obtained (among them 15 in specified range) 18:44 Iteration No.11 19 shapes obtained (among them 18 in specified range) 18:44 Iteration No.12 21 shapes obtained (among them 20 in specified range) 18:45 Iteration No.13 23 shapes obtained (among them 22 in specified range) 18:45 Iteration No.14 25 shapes obtained (among them 24 in specified range) 18:45 Iteration No.15 27 shapes obtained (among them 26 in specified range) 18:45 Generating vectors of dynamic loads 18:45 Calculating unknowns Generating results 18:45 Generating topology 18:45 Generating displacements 18:45 Calculating and generating forces in elements

18:45 Calculating and generating reactions in elements 18:45 Calculating and generating force diagrams in bars 18:45 Calculating and generating deflection diagrams in bars 18:45 Generating mode shapes Total nodal loads on main model: Load case 1 PX=-1.5043e-008 PY=-3.09253e-013 PZ=14513.7 PUX=0.361682 PUY=0.0121076 PUZ=-9.94983e-008 Load case 2 PX=0 PY=0 PZ=2070.37 PUX=0.115605 PUY=0.00585516 PUZ=0 Load case 3 PX=0 PY=0 PZ=5982.43 PUX=-1.27321 PUY=3.47377 PUZ=0 Load case 4 PX=2.83146 PY=-0.341916 PZ=8.96722e-019 PUX=-0.00585164 PUY=-0.0236127 PUZ=0.0330911 Load case 5 PX=0 PY=0 PZ=1828.56 PUX=0.120837 PUY=0.00879186 PUZ=0 Load case 6 PX=0 PY=0 PZ=115.122 PUX=-0.0050445 PUY=-0.00225471 PUZ=0 Load case 7 PX=-69.5267 PY=-69.2115 PZ=0 PUX=1.11716e-015 PUY=-3.05311e-015 PUZ=-1.40998e-014 Load case 8 PX=0 PY=31.144 PZ=0 PUX=0 PUY=0 PUZ=-6.09235e-015 Load case 9-2 PX=-22.2864 PY=-0.00983165 PZ=0.493104 PUX=0 PUY=0 PUZ=0 Load case 9-11 PX=-41.1481 PY=18.3205 PZ=-21.5256 PUX=0 PUY=0 PUZ=0 Load case 9-14 PX=-72.4633 PY=14.5839 PZ=7.18143 PUX=0 PUY=0 PUZ=0 Load case 9-26 PX=-29.962 PY=16.2277 PZ=26.5893 PUX=0 PUY=0 PUZ=0 Load case 10-4 PX=0.0993707 PY=-21.2129 PZ=3.63272 PUX=0 PUY=0 PUZ=0 Load case 10-5 PX=-11.7082 PY=-63.5845 PZ=0.736908 PUX=0 PUY=0 PUZ=0 Load case 11-6 PX=18.0319 PY=-9.7213 PZ=-54.8203 PUX=0 PUY=0 PUZ=0 Analysis protocol Date: 18.03.2021 GenuineIntel Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz 8 threads Microsoft Windows 10 ENG 64-bit. Build 19042 Available RAM = 11185524224 19:30 Reading input data from file C:\Users\Public\Documents\LIRA SAPR\LIRA SAPR 2016 NonCommercial\Data\Mustafa deploma.txt 19:30 Carrying out a check of input data for the main model Number of nodes = 62808 (among them = 62088 nodes that are not deleted)

Number of elements = 61009 (among them = 61009 elements that are not deleted)

MAIN MODEL

19:30 Optimizing order of unknowns

Number of unknowns = 303795

STATIC ANALYSIS

19:31 Generating stiffness matrix

19:31 Generating load vectors

19:31 Decomposing stiffness matrix

19:31 Calculating unknowns

19:31 Checking solution

IMPORTANT. For load case ?1, total residual error 5.47566%

IMPORTANT. For load case ?2, total residual error 0.00201227%

IMPORTANT. For load case ?5, total residual error 0.00217163%

IMPORTANT. For load case ?6, total residual error 0.00670354%

IMPORTANT. For load case ?7, total residual error 40.5818%

IMPORTANT. For load case ?8, total residual error 79.6639%

IMPORTANT. Geometrically unstable system at node 57986 along direction UZ with max residual 100% (0.512057 applied against -40.5077 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 4740 along direction UZ with max residual 100% (0 applied against 4.54839 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 4760 along direction UZ with max residual 100% (-2.22045e-016 applied against -4.54839 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 57986 along direction UY with max residual 100% (2.5026 applied against -618.224 obtained) in load case 1. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 57986 along direction Y with max residual 100% (0.11625 applied against -2.06125 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 57986 along direction UX with max residual 100% (1.22142 applied against -262.685 obtained) in load case 1. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 4735 along direction Y with max residual 100% (0.42625 applied against -1.27875 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 57986 along direction X with max residual 100% (0.3295 applied against -1.1203 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 4735 along direction UZ with max residual 100% (-0.0500521 applied against 1.1512 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 4760 along direction Y with max residual 100% (0.389375 applied against -0.77875 obtained) in load case 7. Restraint is imposed.

IMPORTANT. Only 10 messages about geometrical unstability with max residual are displayed. Altogether such messages 889. Unstability is found in directions X, Y, Z, UX, UY, UZ

Nodes with unknowns that cause geometrically unstable system are coloured red on the model

IMPORTANT. Residual of solution at node 52234 along direction X. Max residual 100% (0 applied against -5.79804e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 57581 along direction X. Max residual 100% (0 applied against 4.60148e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 46772 along direction X. Max residual 100% (0 applied against 4.55768e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 52241 along direction X. Max residual 100% (0 applied against -4.48227e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 46651 along direction X. Max residual 100% (0 applied against -4.38272e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 46840 along direction Y. Max residual 100% (0 applied against -4.3001e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 52228 along direction X. Max residual 100% (0 applied against -4.21205e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 57721 along direction Y. Max residual 100% (0 applied against 4.16636e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 57727 along direction Y. Max residual 100% (0 applied against -4.07472e-005 obtained) in load case 1

IMPORTANT. Residual of solution at node 30399 along direction X. Max residual 100% (0 applied against -4.01735e-005 obtained) in load case 1

IMPORTANT. Only 10 max residuals are displayed. Altogether residuals 276. Residuals are found along directions X, Y

IMPORTANT. Buckling at node 62797 along direction Y. Nodes with buckling are coloured red on the model

DYNAMIC ANALYSIS

19:31 Generating mass matrix for dynamic load case No.9

19:31 Generating mass matrix for dynamic load case No.10

19:31 Generating mass matrix for dynamic load case No.11

Calculating natural vibrations for dynamic load cases No.No.9 10 11

Total masses: mX=1954.79 mY=1954.79 mZ=2358.49 mUX=0 mUY=0 mUZ=0

19:31 Conducting a check of model suitability for calculation of natural vibrations with such mass application. The check is made by applying masses as static loads.

IMPORTANT. Total residual error 4.47631%

IMPORTANT. Geometrically unstable system at node 57986 along direction UZ with residual 100% (0 applied against -90.1717 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 30501 along direction UX with residual 100% (0 applied against 72.8023 obtained). Restraint is imposed.

IMPORTANT. Geometrically unstable system at node 30312 along direction UX with residual 100% (0 applied against 72.731 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 57986 along direction

UY with residual 100% (0 applied against 63.2714 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 57986 along direction

UX with residual 100% (0 applied against 26.9003 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4744 along direction

UZ with residual 100% (0 applied against -11.8713 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4744 along direction

UY with residual 100% (0 applied against 8.75726 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4735 along direction

UZ with residual 100% (0 applied against 6.23351 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 4735 along direction

UX with residual 100% (0 applied against -6.19246 obtained). Restraint is imposed. IMPORTANT. Geometrically unstable system at node 25204 along direction

UZ with residual 100% (0 applied against 6.1782 obtained). Restraint is imposed.

IMPORTANT. Only 10 messages about geometrical unstability with max residual are displayed. Altogether such messages 2472. Unstability is found in directions X, Y, Z, UX, UY, UZ

Nodes with unknowns that cause geometrically unstable system are coloured red on the model

IMPORTANT. Residual of solution at node 62805 along direction Y. Residual 100% (0.000258745 applied against -0.000452766 obtained)

IMPORTANT. Residual of solution at node 57803 along direction UY. Residual 100% (0 applied against 2.34361e-005 obtained)

IMPORTANT. Residual of solution at node 52281 along direction UZ. Residual 100% (0 applied against 2.29288e-005 obtained)

IMPORTANT. Residual of solution at node 52287 along direction UZ. Residual 100% (0 applied against 2.03899e-005 obtained)

IMPORTANT. Residual of solution at node 57716 along direction UY. Residual 100% (0 applied against 1.99814e-005 obtained)

IMPORTANT. Residual of solution at node 30350 along direction UZ. Residual 100% (0 applied against 1.9714e-005 obtained)

IMPORTANT. Residual of solution at node 46774 along direction UZ. Residual 100% (0 applied against 1.95433e-005 obtained)

IMPORTANT. Residual of solution at node 46842 along direction UZ. Residual 100% (0 applied against 1.90305e-005 obtained)

IMPORTANT. Residual of solution at node 52203 along direction UY. Residual 100% (0 applied against 1.81573e-005 obtained) IMPORTANT. Residual of solution at node 52267 along direction UY.

Residual 100% (0 applied against -1.74185e-005 obtained)

IMPORTANT. Only 10 max residuals are displayed. Altogether residuals 404. Residuals are found along directions X, Y, UY, UZ

IMPORTANT. Buckling at node 62797 along direction Y.

Nodes with buckling are coloured red on the model

19:31 Calculating natural vibrations

19:31 Iteration No.1

19:31 Iteration No.2

0 shapes obtained (among them 0 in specified range)

19:31 Iteration No.3

4 shapes obtained (among them 4 in specified range) 19:31 Iteration No.4

4 shapes obtained (among them 4 in specified range) 19:31 Iteration No.5

5 shapes obtained (among them 5 in specified range) 19:31 Iteration No.6

9 shapes obtained (among them 8 in specified range) 19:31 Iteration No.7

10 shapes obtained (among them 9 in specified range) 19:31 Iteration No.8

12 shapes obtained (among them 11 in specified range) 19:31 Iteration No.9

14 shapes obtained (among them 13 in specified range) 19:31 Iteration No.10

16 shapes obtained (among them 15 in specified range) 19:31 Iteration No.11

19 shapes obtained (among them 18 in specified range) 19:31 Iteration No.12

21 shapes obtained (among them 20 in specified range) 19:31 Iteration No.13

23 shapes obtained (among them 22 in specified range) 19:31 Iteration No.14

25 shapes obtained (among them 24 in specified range) 19:31 Iteration No.15

27 shapes obtained (among them 26 in specified range)

19:31 Generating vectors of dynamic loads

19:31 Calculating unknowns

Generating results

19:31 Generating topology

19:31 Generating displacements

19:31 Calculating and generating forces in elements

19:31 Calculating and generating reactions in elements

19:31 Calculating and generating force diagrams in bars

19:31 Calculating and generating deflection diagrams in bars 19:32 Generating mode shapes Total nodal loads on main model: Load case 1 PX=-1.5043e-008 PY=-3.09253e-013 PZ=14513.7 PUX=0.361682 PUY=0.0121076 PUZ=-9.94983e-008 Load case 2 PX=0 PY=0 PZ=2070.37 PUX=0.115605 PUY=0.00585516 PUZ=0 Load case 3 PX=0 PY=0 PZ=5982.43 PUX=-1.27321 PUY=3.47377 PUZ=0 Load case 4 PX=2.83146 PY=-0.341916 PZ=8.96722e-019 PUX=-0.00585164 PUY=-0.0236127 PUZ=0.0330911 Load case 5 PX=0 PY=0 PZ=1828.56 PUX=0.120837 PUY=0.00879186 PUZ=0 Load case 6 PX=0 PY=0 PZ=115.122 PUX=-0.0050445 PUY=-0.00225471 PUZ=0 Load case 7 PX=-69.5267 PY=-69.2115 PZ=0 PUX=1.11716e-015 PUY=-3.05311e-015 PUZ=-1.40998e-014 Load case 8 PX=0 PY=31.144 PZ=0 PUX=0 PUY=0 PUZ=-6.09235e-015 Load case 9-2 PX=-22.2856 PY=-0.00971644 PZ=0.493066 PUX=0 PUY=0 PUZ=0 Load case 9-11 PX=-40.9315 PY=18.255 PZ=-21.4743 PUX=0 PUY=0 PUZ=0 Load case 9-14 PX=-72.2812 PY=14.5883 PZ=7.12315 PUX=0 PUY=0 PUZ=0 Load case 9-26 PX=-30.0158 PY=16.2705 PZ=26.5959 PUX=0 PUY=0 PUZ=0 Load case 10-4 PX=0.0988784 PY=-21.2122 PZ=3.6326 PUX=0 PUY=0 PUZ=0 Load case 10-5 PX=-11.6404 PY=-63.8497 PZ=0.661744 PUX=0 PUY=0 PUZ=0 Load case 11-6 PX=17.981 PY=-9.68571 PZ=-54.7656 PUX=0 PUY=0 PUZ=0

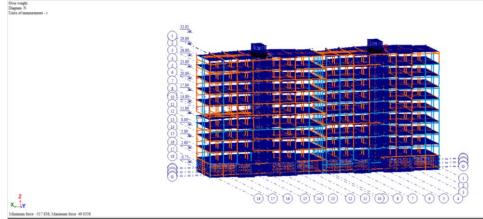


Figure A.1 - Axial force diagram N

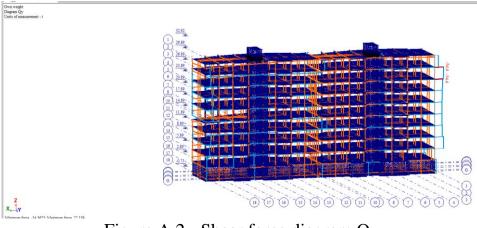


Figure A.2 - Shear force diagram Qy

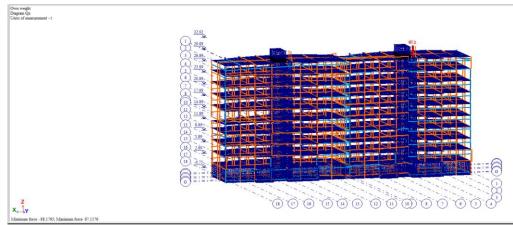


Figure A.3 - Shear force diagram Qz

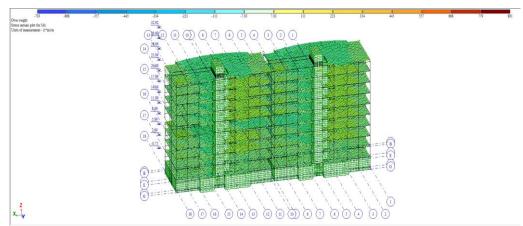


Figure A.4 - Stress Mx

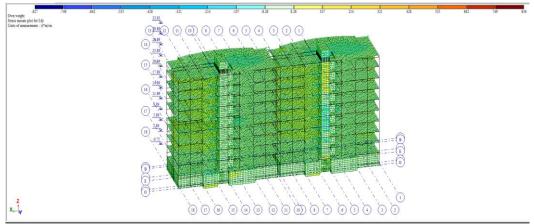


Figure A.5 - Stress My

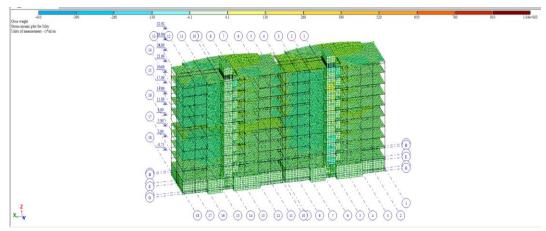


Figure A.6 - Stress Mxy

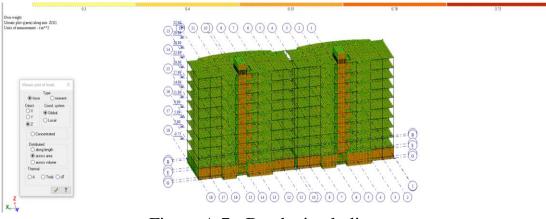


Figure A.7 - Dead wiegth diagram

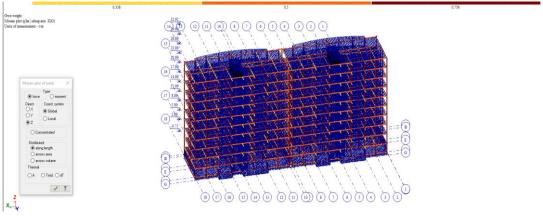
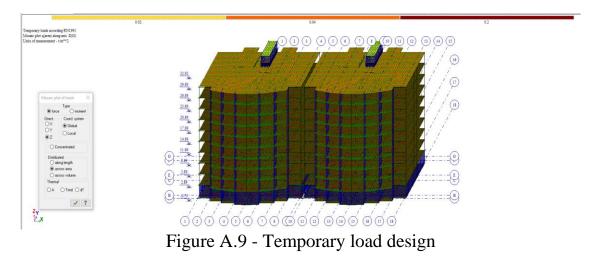



Figure A.8 - Self-weight of rods The floor structure is established according to table

Appendex B

Name of	Justific ation (ENIR,	Unit of	Volume	Standar d time	Quotati on, u.e.	Labor costs	Sa	alary			
processes	No., table, point)	measure	of work	Working h–h.	Drivers of m– cm.	Working	Drivers	Working, h–d	Drivers of m–cm.	Worki ng	Drivers
2	3	4	5	6	7	8	9	10	11	12	13
The construction of temporary fencing		10m	156	1,2	_	1,3	_	187.2	_		Η
Removal of top soil		1000 m2	2730.7	_	0.56	-	0.6	_	564,82	—	917.4
Soil excavation in the trench and trench access to the pit		100 m2	958.2	2.8	3.56	1.48	1.7	2682.9	312,78	3970.9	5798
Excavation of soil underrun		m3	2160	1.64	_	0.54	_	3542.4	_	1912.8	_
Concrete preparation for foundations		m3	0.321	0.79	_	0.49	_	0.25	_	0.1225	_
Reinforcement installation of strip foundation manually		Т	7092	22,17	_	15	_	131202	_	18368 28	_
Formwork installation of		m2	1241.8	0,36	0,12	0,35	0,17	459.4	1323,88	59.77	18.62

Table B.1 - Cost calculations of machine time, labor costs and salary

strip foundation manually										
Concreting of strip foundation	m3	70.92	1,2	0,89	0,34	0,31	62.4	50,54	13.7	10.6
Formwork removal of strip foundation	m2	1241.8	0,31	_	0,08	_	235.9	_	110.8	18.6
Foundation waterproofing	100m2	300	10	_	7,15	-	3000	_	21450	-
Backfilling	m2	167.5	_	0,39	_	1,58	_	850,08	_	103.17
Soil compaction	100 m2	334	-	0,92	-	0,26	_	6683,8	_	79.8.8
Final land planning	100 m2	1860	0,33	0,49	1,58	1,65	615.7	754,6	9728	1508.5
Removal of temporary fencing	10m	200	0,90	-	1,05	-	180	_	189	_

Estimated calculation of the cost of construction in the amount of 19Row 7Column

Including refundable amounts: 15Row7Column

Value added tax 18Row7Column

ESTIMATE CALCULATION OF THE COST OF CONSTRUCTION

1334707.12650815 thousand tenge 1858.459977 thousand tenge 143004.334983016 thousand tenge

Compiled in 2001

	Estimated cost, thousand tenge						
P / p No.	No. of estimates and calculations	Name of chapters, objects, works and costs	works and costs construction and equipment, furniture installation works and inventory		other costs	Total, thousand tenge	
1	2	3	4	5	6	7	
1	1	School	329339	-	-	329339	
2		Total = 1 line	329339	-	-	329339	
3		Costs of preparatory work on the construction site 1.1% * 2 line 7 column	3622.729	-	-	3622.729	
4		Main construction objects buildings and structures 15% * 3r7c	543.40935	-	-	543.40935	
5		Total = 3 lines	3622.729	-	-	3622.729	
6		Total 2s + 5s	332961.729	-	-	332961.729	
7		Additional costs during the performance of work in the winter 1.2% * 6r7c	3995.540748	-	-	3995.540748	
8		Seniority costs 1% * 6r7c			3329.61729	3329.61729	
9		Costs for additional vacations 0.4% * 6r7c			1331.846916	1331.846916	
10		Total 7r + 8r + 9r	3995.540748		4661.464206	8657.004954	
11		Total 6r + 10r	336957.269748		4661.464206	341618.733954	
12		Including refundable amounts = 4r	543.40935		-	543.40935	

13	Total according to the estimated calculation in base prices 2001 = 11r	336957.269748	4661.464206	341618.733954
14	Total estimated at current prices in 2020. 13r * 3.42	1152393.86253816	15942.20758452	1168336.07012268
15	Including refundable amounts in current prices 12r7c * 3.42	1858.459977		1858.459977
16	Taxes, fees, mandatory payments, 2% * 14r7c		23366.7214024536	23366.7214024536
17	Estimated cost at the current price level 14r + 16c	1152393.86253816	39308.9289869736	1191702.79152513
18	VAT (12%) * 17r7c		143004.334983016	143004.334983016
19	Construction cost 17r + 18c	1152393.86253816	182313.26396999	1334707.12650815

Construction site name -		Residential building in Shymke	ent	1			1			
01: 4		D '1 ('11-'11' ' 01 1								
Object name -		Residential building in Shymke	ent	<u> </u>						
									1	
			LOCAL E	STIMATE						
			(Local estima	ate calculatio	n)					
Base:									-	_
			Estimated cost						329339	thousand tenge
			Standard labor intensity						1176	person-h
			Estimated wages						11301	thousand tenge
Compiled in 20	001			-			•			
				Unit cos	t, tenge	Total co	ost, tenge		Labor c	osts, man-
	Code and item	Name of works and costs, unit		Total	Expl. machines	Total	Expl. machines	Overheads	cons	ours, truction orkers
N p / p	number of the standard	of measure	Number	Salary of	incl. Salary of	Salary of	incl. Salary of	tenge	worke	rs serving chines
				construction workers	drivers	construction workers	drivers	%	for one.	Total
1	2	3	4	5	6	7	8	9	10	11
			SEC T	<u>FION 1 Equipr</u>	nent					
1	Ts0110-350- 23	Layout of areas from soils of 2 group mechanized way	2	953.00	9.20	1200	18	868	2.00	8

				953.00	4.50	950	9	101	0.03	0.06 /
2	SPRICE	Cutting off the vegetation layer							0.03	
			one	63564.15	-	8564	-	-		-
				-	-	-	-	-	0.03	-
3	SPRICE	Development of soil of 3 groups from 1408.86 loading on dump trucks excavators with bucket with a capacity of 0.65 m3	one	13451.32	-	1835	-	-	0.03	-
				-	-	-	-	-	0.03	-
4	SPRICE	Development of soil of 3 groups in 801.82 excavator dump Dragline or Reverse shovel "with a bucket capacity 0.65 m3	10	11202.96	-	152030	_	_	0.03	-
				-	-	-	-	-	0.03	-
5	SPRICE	Transportation of soil							0.03	
			eight	13634.30	-	129074	-	-		_
			8	-	-	-	-	-	0.03	-
6	Ts0110-669-3	Layout of the bottom of the pit							0.03	
			21	11235.00	1.60	40880	34	17690		405
				11235.00	-	19656	-	90	0.03	-
7	SPRICE	Manual soil finishing software package (version 4.2.3)							0.03	
			10	1835.77	-	18358	-	-		-
				-	-	-	-	-	0.03	-
8	SPRICE	Concrete device preparation	10	11236.00	_	12328	_	_	0.03	_
			-	-	-		-	-	0.03	-
9	SPRICE	Device w / concrete foundations							0.03	
			one	14850.57	-	14851	-	-		-
				-	-	-	-	-	0.03	-

10	Ts0110-345-4	Frames and flat meshes: Rev. and ribbed steel ext. 9 class A-III, d 14		7207.00	149.00	0207	140	((7)	0.03	49
		mm SN RK 8	one	7207.00 6570.00	148.00 38.30		148 38		0.03	<u>48</u> 0
11	SPRICE	Reinforced concrete device		0370.00	38.30	0370		101	0.03	0
11	SPRICE	Kennorced concrete device							0.03	
			one	10817.27	-	10817	-	-		-
				-	-	-	-	-	0.03	-
12	SPRICE	Frames and flat meshes: Rev. and ribbed steel ext. 9 class A-III, d 12							0.03	
		mm	one	4882.00	-	8828	-	-		-
				-	-	-	-	-	0.03	-
13	SPRICE	Waterproofing horizontal cement with liquid glass walls, foundations		4566.00		25830			0.03	
		1 0)	one	4500.00	-	25850		-	0.03	-
14	SPRICE	Backfilling of soil		-	-	-	-	-	0.03	-
14	SPRICE	Backfinning of son	one	20830.27	_	40830	-	-	0.03	-
				-	-	-	-	_	0.03	_
15	SPRICE	Soil compaction, group 1,2 pneumatic rammers		25024 (4		25025			0.03	
			one	37034.64	-	37035	-	-	0.02	-
	_			-	-	-	-	-	0.03	-
		TOTAL SECTION 1 DIRECT COSTS	Tenge			511666	200			461
		DIRECT COSTS	Tenge			27176	47			-
		stallation work -	Tenge			511666				
	Materials -		Tenge							
	Total salary -		Tenge			27223				
	The cost of ma	aterials and structures -	Tenge							
		Overhead costs -	Tenge			25232				
		Normative labor intensity in N.R	person-h							23
		Estimated wages in N.R	Tenge				3785			
		Irregular and unforeseen costs -	Tenge			32214				

	TOTAL, the co	ost of installation work -	Tenge			504685				
		Standard labor intensity -	person-h							484
		Estimated salary -	Tenge				31008			
		TOTAL SECTION 1	Tenge			504685				
		Standard labor intensity -	person-h							484
		Estimated salary -	Tenge				31008			
			SEC	TION 2 Mater	ials					
16	Ts0108-148-1	Laying of basement slab								
			92	27.70	2.10		793	1765	0.10	8
		x		19.70	0.50	2021	86	95	-	-
17	SPRICE	Laying of external walls	72	52.62		9788				
			12	52.02		9700	-	-	-	
18	SPRICE	Bricks and ceramic stones Rev. and								
10	SIKICE	single additional issue 10	twenty	47.24		15444	_	-	_	-
			2	-	-	-	-	_	-	-
19	SPRICE	Laying of partitions								
			2	50.53		901	-	-	-	-
• •	~~~~~			-	-	-	-	-	-	-
20	SPRICE	Installation of partitions from	36	4.48		961				
			50	+0						
21	Ts0111-108-7	Staircase device								
21	150111 100 /									
			600	132.92		99752	-	one	0.59	854
				105.75		73840	-	90	-	-
22	SPRICE	Installation of lift shafts with								
		weight more than 2.5 t	600	50.23		30138	-	-	-	
				-	-	-	-	-	-	-

23	Ts0111-108-9	Arrangement of balcony slabs								
			20	399.77		8999	_	one	1.90	48
				344.25		8858		90	-	
24	SPRICE	Beamless device slabs up to 220mm	20	103.15		4063				
			20	-	_					-
25	SPRICE	Frames and flat meshes:	1200	1.49	0.00	2235		-	-	_
				-	-	-	-	-	_	-
26	Ts0108-148-1	Reinforcement blanks, not Rev. and assembled into frames and meshes additional item 9 smooth steel class A-I, d 6	900	27.70	2.10	24930	2345	17271	0.10	100
		A-1, d b	900	19.70	0.50				0.10	100
27	SPRICE	Three-layer pitched roofs		1).70	0.50	17750	0.50	75		
27	SINCE		900	41.56		37404	-	-	-	-
				-	-	-	-	-	-	-
28	Ts0108-409-1	Installation of window blocks from PVC profiles								
			450	108.60	48.90	48870		16929	0.22	100
				39.60	12.20	17820		95	0.07	41
29	SPRICE	Single-leaf window blocks with paired shutters OS 9-9	300	9.87		4961	-	-	-	-
				-	-	-	-	-	-	-
30	SPRICE	Installation of door blocks from PVC profiles in external and internal stone openings walls	150	17.34	-	3509	-	-	-	-
				-	-	-	-	-	-	-
31	SPRICE	Door blocks	four	8429.18	-	33716	_	_	_	_
				-	-	-	_	-	_	-
32	S143001-1	Glazing of windows	0.5		_					

				-	-	-	-	-	-	-
33	E0101-14-1	Plaster, simple surfaces with lime mortar for stone and concrete walls								
			37.5	12.48	12.48	945	465	118	-	-
				-	3.24	-	122	97	0.01	0.375 /
		TOTAL SECTION 2	Tenge			350000520	3138	36085		1120
		DIRECT COSTS	Tenge			107697	1058			
	The cost of ins	stallation work -	Tenge			350000520				
	Materials -		Tenge							
	Total salary -		Tenge			108755				
	The cost of ma	aterials and structures -	Tenge							
		Overhead costs -	Tenge			360085				
		Normative labor intensity in N.R	person-h							56
		Estimated wages in N.R	Tenge				54013			
		Irregular and unforeseen costs -	Tenge			21021636				
	TOTAL, the c	ost of installation work -	Tenge			329338969				
		Standard labor intensity -	person-h							1176
		Estimated salary -	Tenge				11300728			
		TOTAL SECTION 2	Tenge			329338969				
		Standard labor intensity -	person-h							1176
		Estimated salary -	Tenge				11300728			
		TOTAL DIRECT COSTS	Tenge			350512187	3138			737
		BY ESTIMATE:	Tenge			134873	1105			
		The cost of materials and structures -				22421006				
	Recalculation June 1, 2021	of totals into prices as of								

Total direct costs			350000520		
Overheads	#REF!				
Irregular and unforeseen costs			329338969		
TOTAL in prices as of 01.01.2001	3293389.688128	332632358.50			
Total with the cost of seniority	1317355.8752512	330656324.69			
Total with the cost of additional leave	11308446.3043314				
Total at current prices as of 06/14/2018	226168.926086627	11534615.23			
Total with taxes, fees and obligations. payments	12 %	1384153.83			
Value Added Tax (VAT)			12918769		
Total with value added tax (VAT)					

Object estimation

Residential		
building		
Estimated cost	329339	thousand tenge
Standard labor	1.176	thousand people hour
intensity		
Estimated salary	11301	thousand tenge

Compiled in 2001

			Estimated of	cost, thousand teng	ge				
P / p No.	No. of estimates and calculations	Name of works and costs	construction and installation works	equipment, furniture and inventory	other costs	Total	Normative labor intensity, thousand people hour	Estimated salary, thousand tenge	Indicators of a unit cost, thousand tenge
one	2	3	four	five	6	7	eight	nine	10
	one	Installation work	329339			329339	1.176	11301	
		Total	329339			<mark>329339</mark>	1.176	11301	

Construction site name -

RESOURCE ESTIMATE

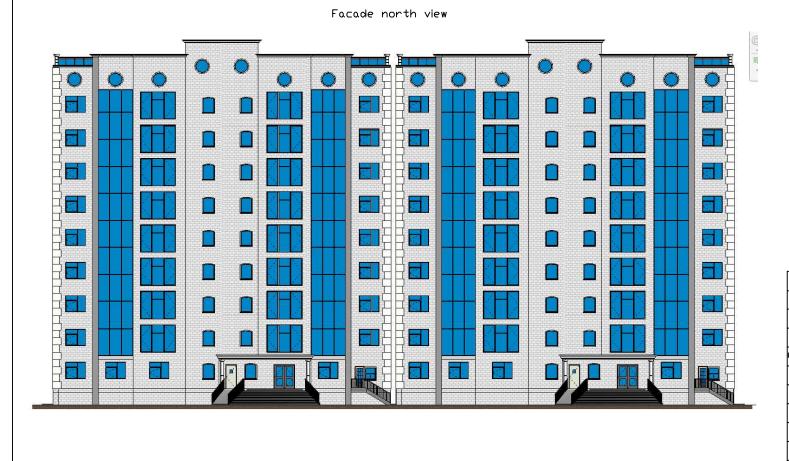
Object name -

Residential building in Shymkent

Base:

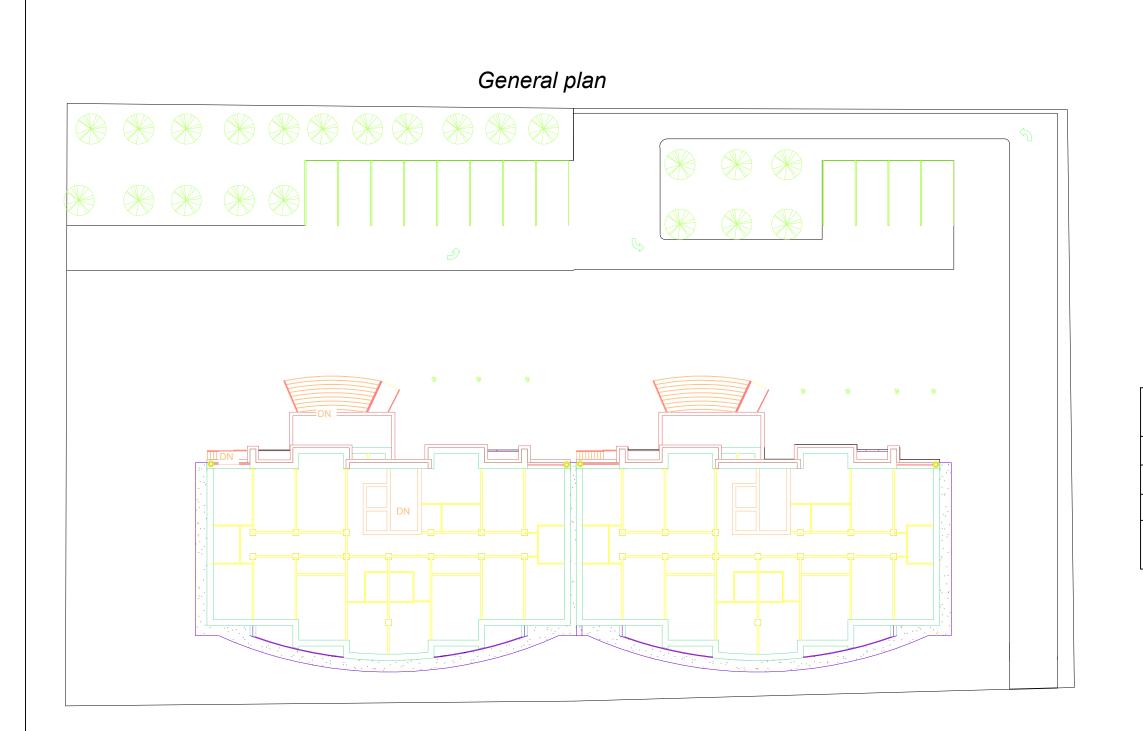
Compiled in 2001

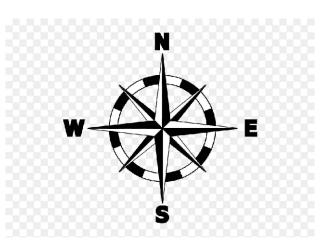
Tenge


1									e
-	ABC resource code		Name of resources, equipment, structures,		Number of	Estimated unit price	Sale price per unit	Transport costs per unit	Cost (Total)
No.	and attribute	cipher	products and parts	measurement	units	justification	justification	Total	
one	2	3	four	five	6	7	eight	nine	10
			LAF	BOR RESOUR	CES				
1	1		Labor costs of construction workers	man-h	737	182.98	-	-	1304773
						-	-	-	
2	3		Labor costs of machinists	man-h	0.06	173.25	-	-	8850
						-	-	-	
			TOTAL	Tenge				-	1304773
							• •		
			CONSTRUCTION	MACHINES AN	ND MECHA	ANISMS			
						OPERATION OF MACHINES		Salary of the Engineers	
3			Construction machines and mechanisms	machine-h		2083	-	8850	

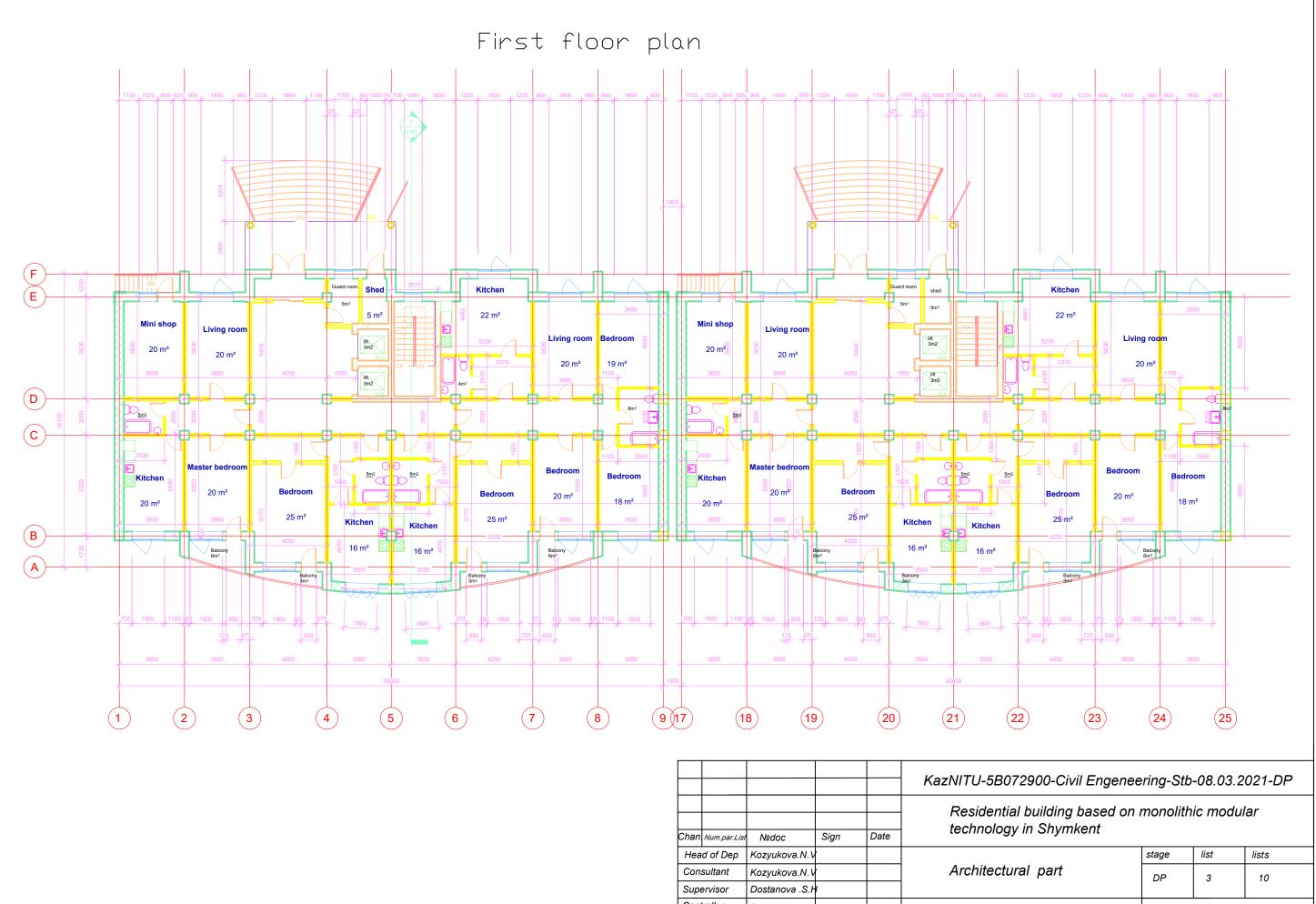
						-	-		1000933
			TOTAL	Tenge					
			BUILDING MAT	ERIALS AND	STRUCTUR	RES			
4	6300 M	S143001-1		m3	0.5	_	-		35999
•	0000 111	51150011		mo		-	-	-	
5		SPRICE	Reinforcement blanks, not assembled into frames and meshes smooth steel class A-I d 10 mm	РС	one	63564.15	-	-	63564
						-	-	-	-
6		SPRICE	Reinforcement blanks, not assembled into frames and meshes smooth smooth steel class A- I, $d = 6$ mm	РС	four	8429.18	-	-	262155927.18
						-	-	-	-
7		SPRICE	heavy concrete, class B25 / M-300 / m3	m	150	207.34	-	-	. 31101
						-	-	-	-
8		SPRICE	Heavy concrete class B3,5 / M-50 / m3	m	300	19.87	-	-	5961
						-	-	_	
9		SPRICE	Heavy concrete, class B7,5 / M-100 / m3	m	900	410.56	-	-	369504
						-	-	-	
10		SPRICE	Heavy concrete, class B12.5	PC	1200	10.49	-	-	12588
						-	-	-	
11		SPRICE	Heavy concrete, class B15 / M-200 / m3 198.8892	m	twenty	103.15	-	-	2063
						-	-	-	-
12		SPRICE	Gravel for construction works m3	m	600	500.23	-	-	. 300138
						-	-	-	
13		SPRICE		PC	36	104.48	-	-	3761.28
			Bricks and ceramic stones			-	-	-	
14		SPRICE		PC	2	50.53	-	-	101.06
			masonry			-	-	-	-
15		SPRICE	Sand	m	twenty	470.24	-	-	9404.8
						-	-	-	

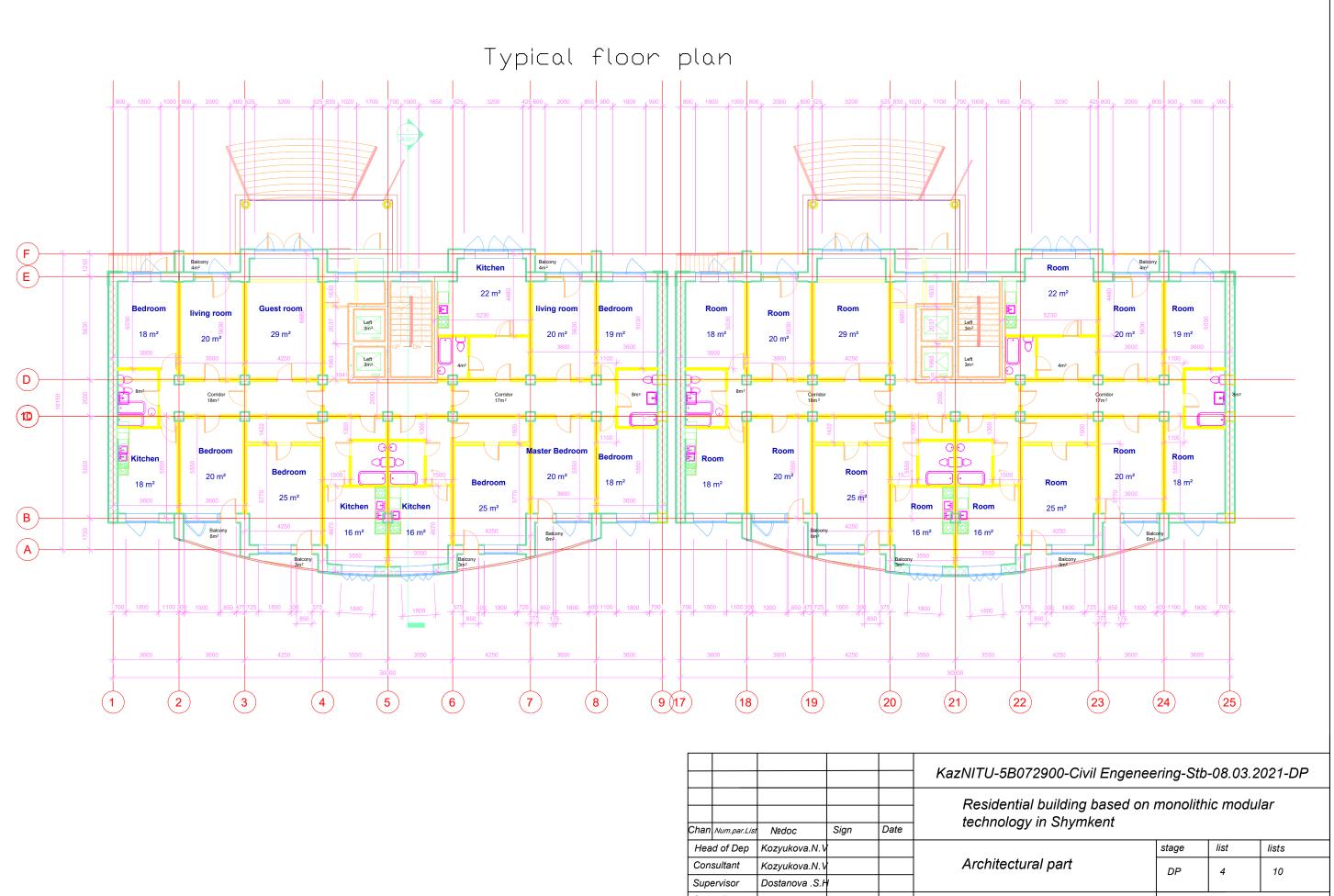
		TOTAL	Tenge				-	264378215.96
27	SPRICE	Ceramic facade tiles m2	PC	one	- 13451.32	-	-	13451
26	SPRICE	d = 10 mm	PC	10	- 11202.96	-	-	112029.6
25	SPRICE	Crushed stone from natural stone for m3 construction works (ST RK 946-92), M-1000 fractions over 40mm Frames and flat meshes: steel t smooth class A-I,	PC	eight	-	-	-	1090434.4
24	SPRICE	Heavy finishing mortar lime 1: 2.5	PC	10	- 1935.77	-		19357.7
23	SPRICE	Heavy finishing solution cement-lime 1: 1: 6	PC	10	9320.83		-	93208.3
22	SPRICE	Heavy finishing solution cement 1: 3	PC	one	14850.57 -	-		14851
21	SPRICE	Heavy masonry mortar cement-lime M-50	РС	one	- 10817.27	-	-	10817
20	SPRICE	Heavy masonry mortar cement-lime M-25	РС	one	- 2882.21	-	-	2882
19	SPRICE	Heavy masonry mortar cement M-100	PC	one	- 2538.38	-	-	2538
18	SPRICE	Ready masonry mortar, heavy m3	РС	one	20830.27		-	20830
17	SPRICE	Dry mixes for installation drywall sheets	РС	one	37034.64	-	-	37035
16	SPRICE	Dry mixes: putties cement-based leveling	m	72	- 92.62	-	- -	6668.64


Hashimi S.M.

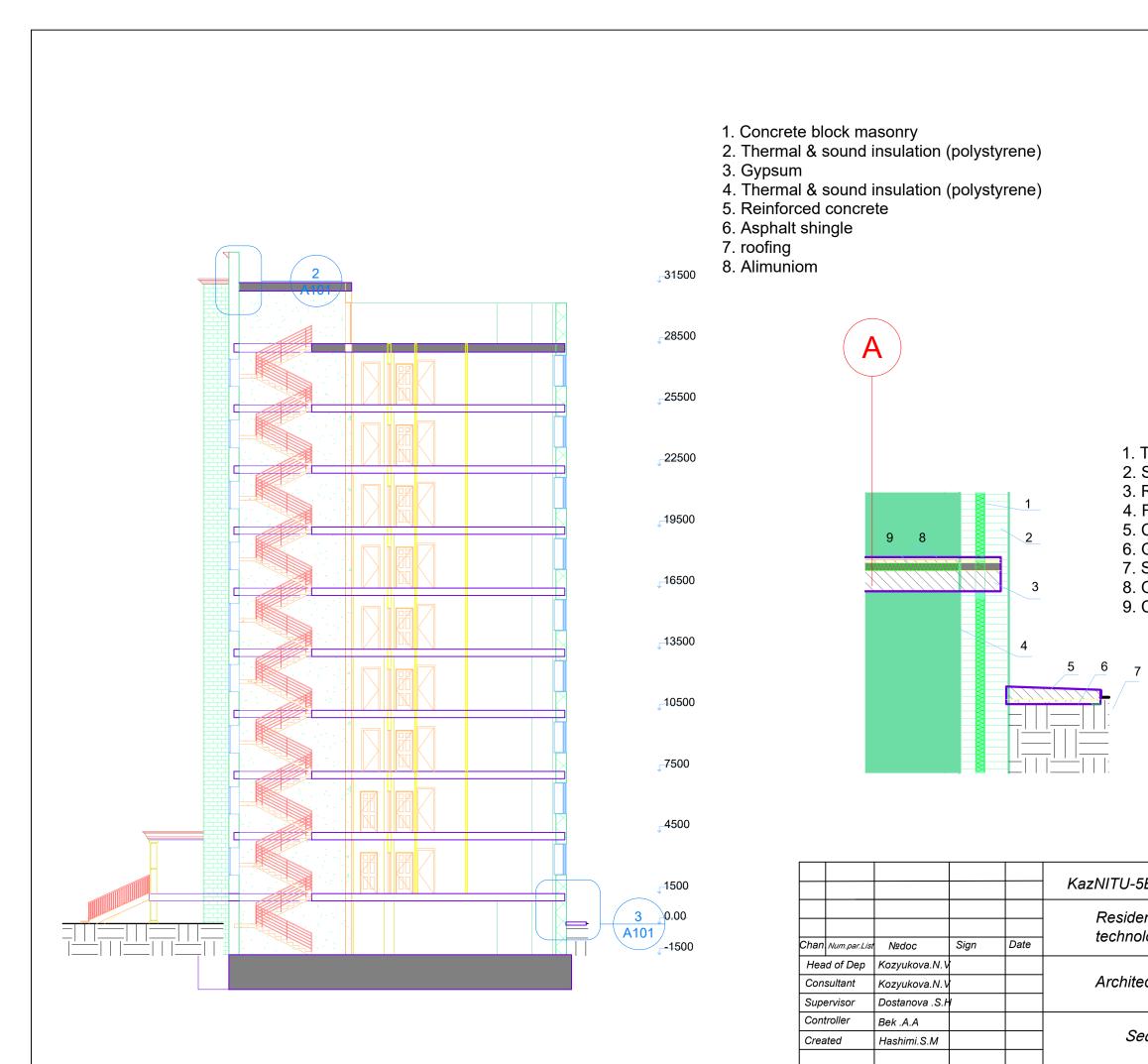


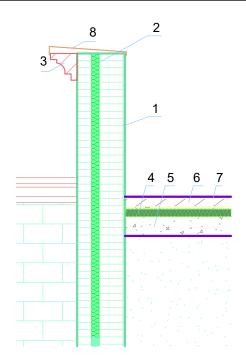
					KazNITU-5B072900-Civil Enge	eneering-St	b-08.03	3.2021-DP	
Chan	Num.par.List	N⊵doc	Sign	Date	Residential building based technology in Shymkent	on monolit	hic moo	dular	
Неа	ad of Dep	Kozyukova.N.V	,			stage	list	lists	
Con	sultant	Kozyukova.N.V	,		Architectural part	DP	1	10	
Sup	ervisor	Dostanova .S.H	1						
Con	troller	Bek .A.A					Construction and building materials departmen		
Crea	Created Hashimi.S.M				Facade				




					KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP				
Chan	Num.par.List	Nedoc	Sign	Date	Residential building based o technology in Shymkent	n monolit	hic moc	lular	
	ad of Dep	Kozyukova.N.V	-			stage	list	lists	
Con	sultant	Kozyukova.N.V	,		Architectural part	DP	2	10	
Sup	ervisor	Dostanova .S.H	1			Di		10	
Con	troller	Bek .A.A				Cons	truction	nd huilding	
Crea	ated	Hashimi.S.M			Facade		Construction and building materials departmen		

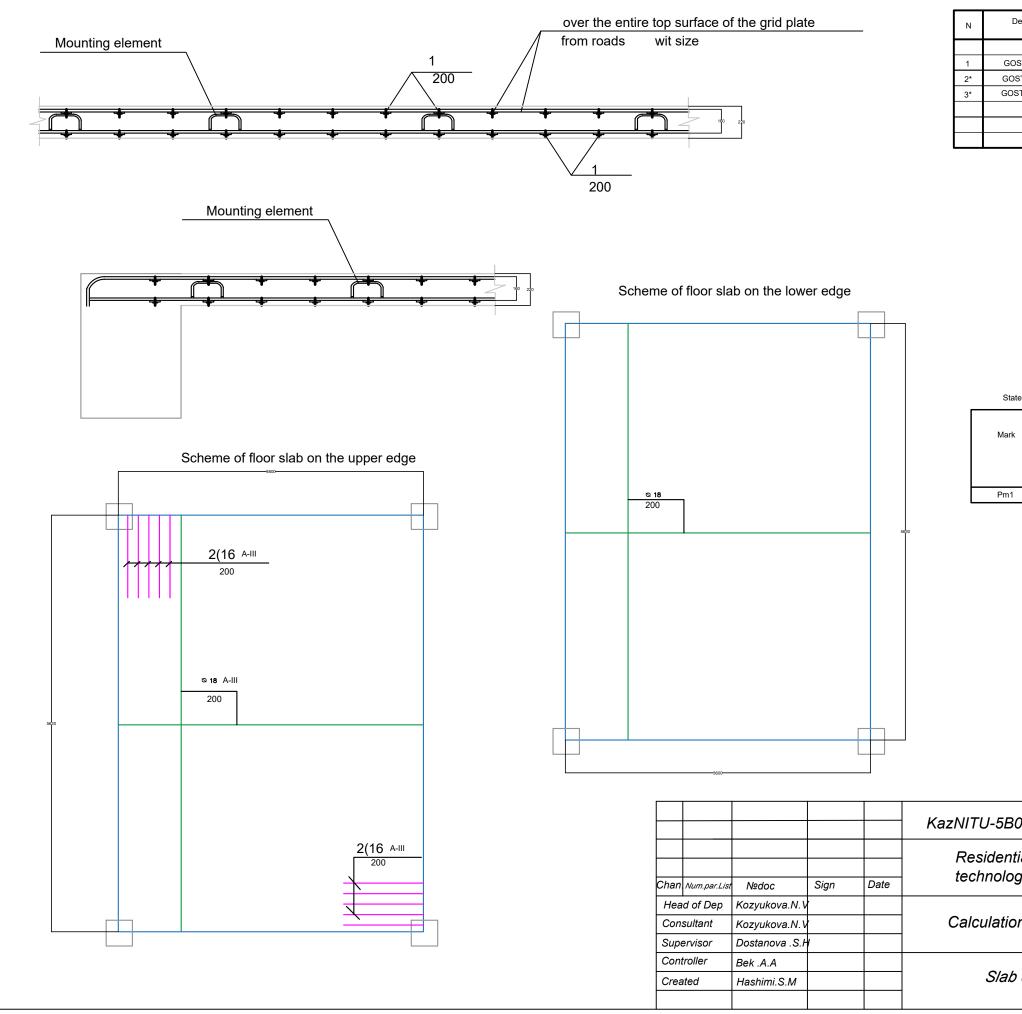
N	Chan.	unit	Quantity
1	Construction volume	M3	31027
2	Land area	М2	2856
3	construction site total area	М2	1156
4	Working Area of construction site	М2	1006.5




Floor scheme Construction and building materials departmen

					KazNITU-5B
					Residen
Chan	Num.par.List	Nºdoc	Sign	Date	technolo
Hea	d of Dep	Kozyukova.N.V	,		
Con	sultant	Kozyukova.N.V	,		Architec
Sup	ervisor	Dostanova .S.F	1		
Con	troller	Bek .A.A			
Crea	ated	Hashimi.S.M			Floc

Construction and building oor scheme materials departmen


- 1. Thermal and sound indulation(polystyrene) 2. Structure 1 (concrete block CMU light) 3. Reinforced concrete slab 4. Finish work gypsum 5. Concrete sand/cement 6. Gravel 7. Soil 8. Oak floor
- 9. Concrete cement/ sand

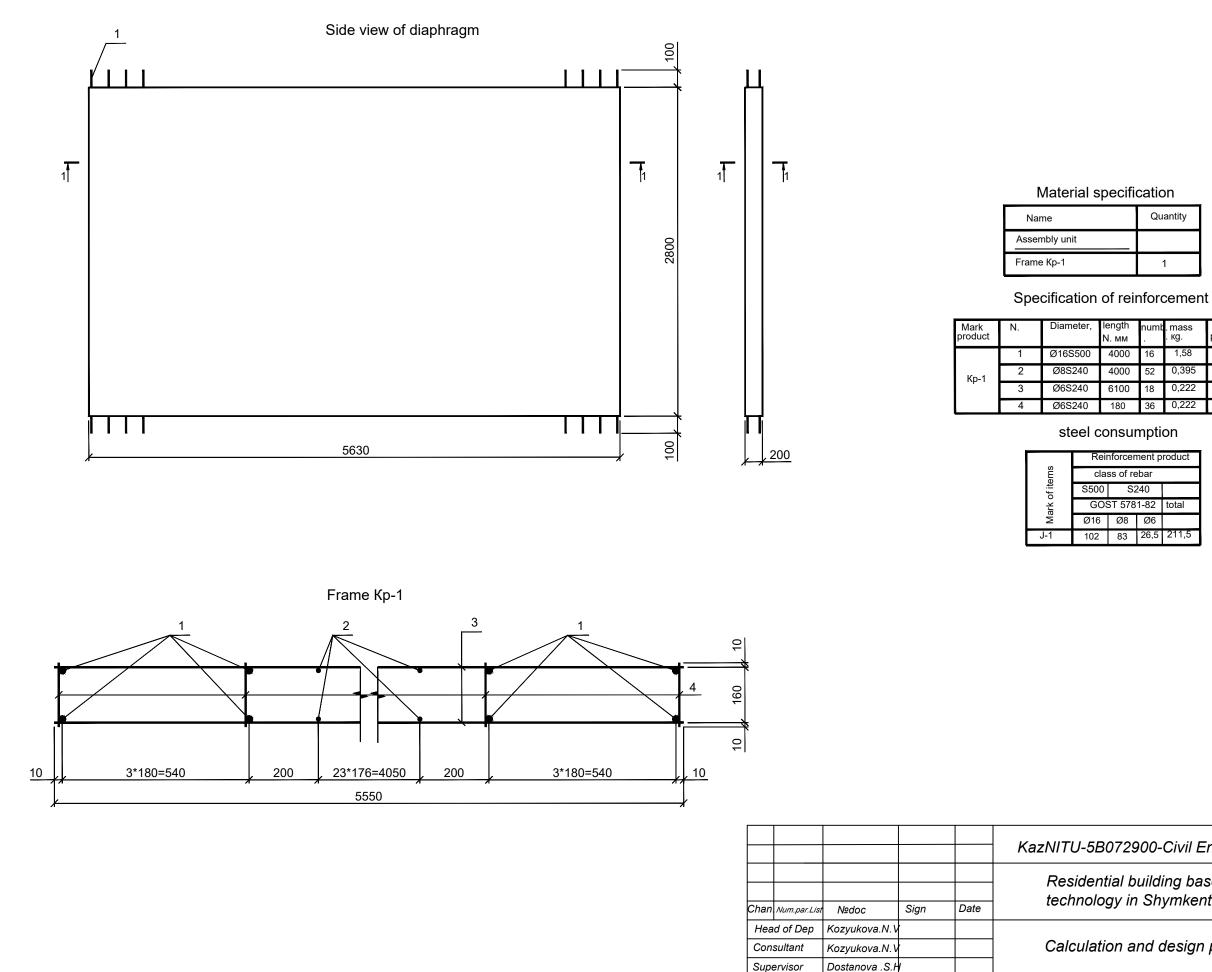
7

KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP

Residential building based on monolithic modular technology in Shymkent

	stage	list	lists
hitectural part	DP	5	10
Section and nodes		uction and als depart	d building men

Specification of element							
Designation	Name			Mass	Note		
	Floor slab Pm1						
GOST 5781-82	∞ 18 A-III	MP	3082	0.888	2736.82		
GOST 5781-82	^{⊗ 14} A-III	L=1290	206	0.80	164.80		
GOST 5781-82	∞ 12 _{A-I}	L=295	1726	0.12	207.12		
	Materials						
	Concrete B25		23.3				


Statement of steel consumption per element kg

		Reinforcement product					
lark	Rebar class		Rebar class				
	A-I		A-III				
	GOST 5781-82					Total	
	© 12		Total	© 18	ଷ 16	Total	
m1	204.1		204.1	2736	164.8	2901	308.74

KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP

Residential building based on monolithic modular technology in Shymkent

	stage	list	lists
tion and design part	DP	6	10
ab design		uction and als depart	-

Controller

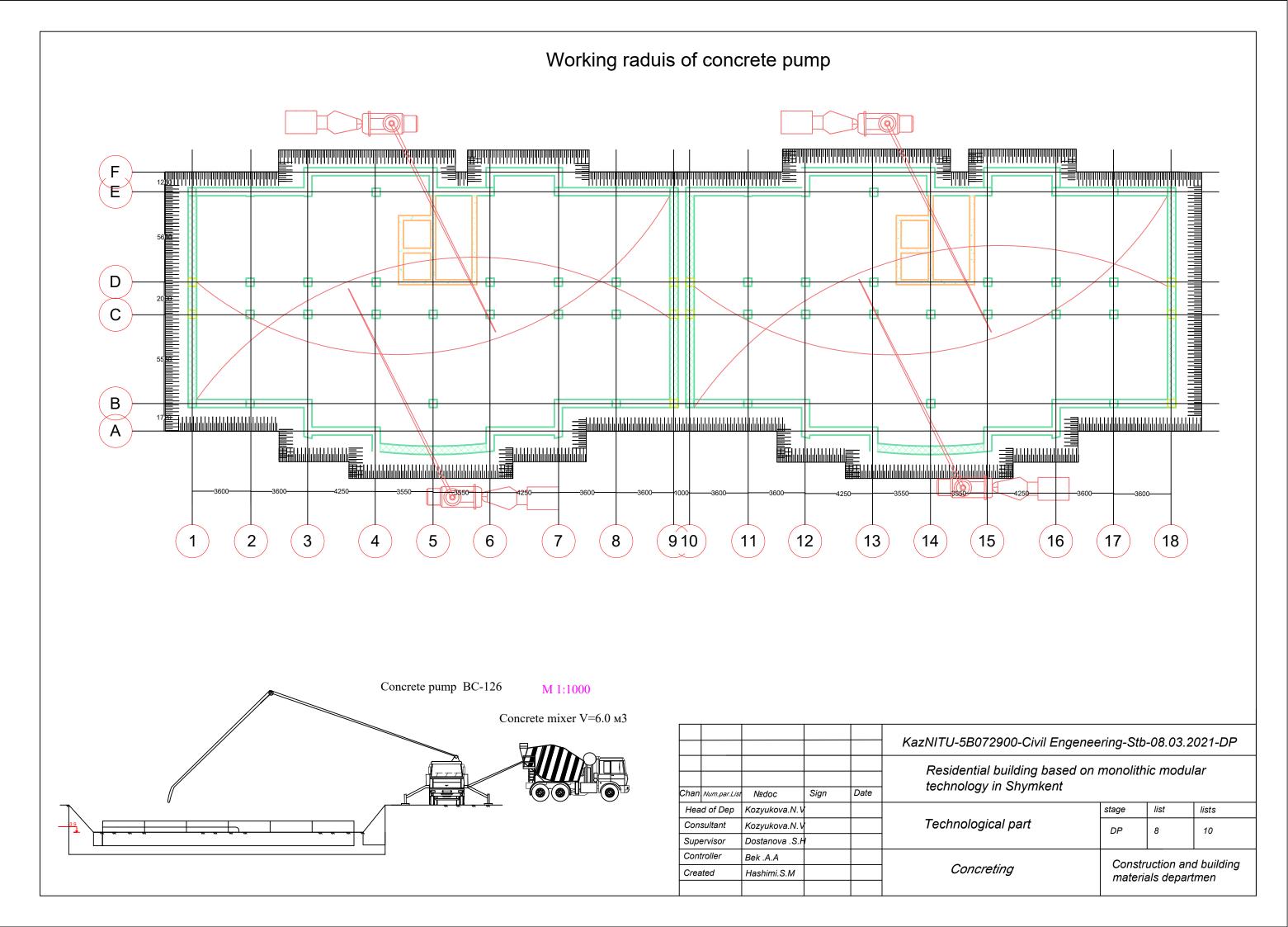
Created

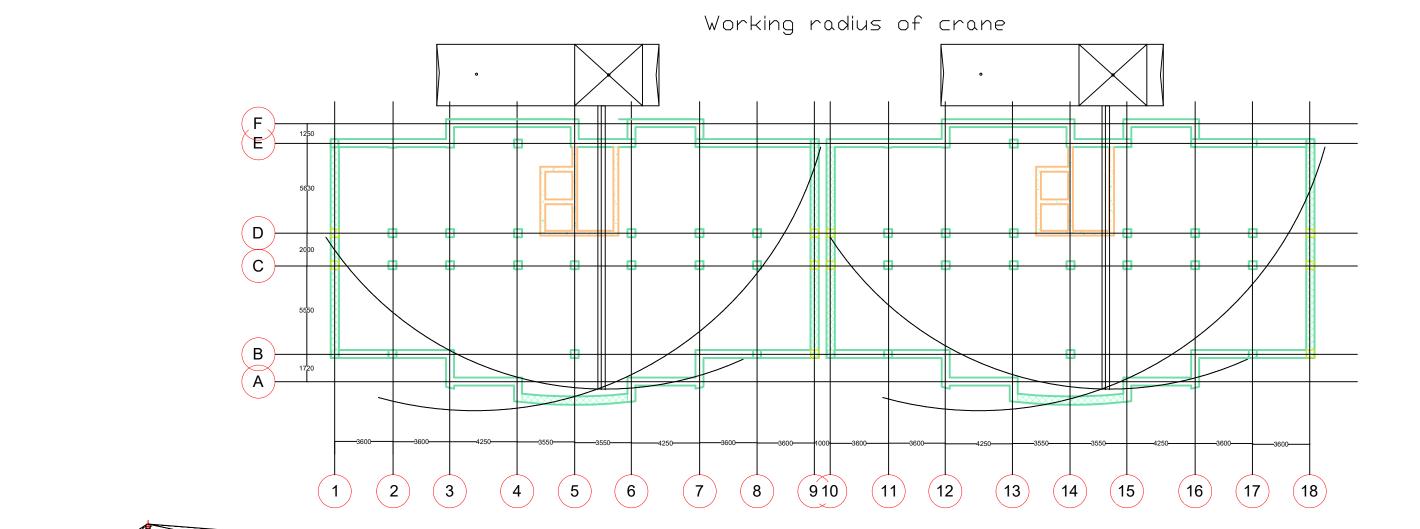
Bek .A.A

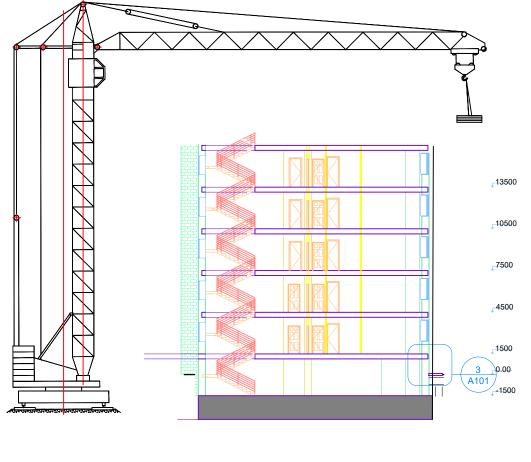
Hashimi.S.M

Quantity
1

length N. мм	numt	. mass . кg.	mass of product, kg
4000	16	1,58	102
4000	52	0,395	83
6100	18	0,222	25
180	36	0,222	1,5


steel consumption


Reii	einforcement product						
class of rebar							
00	S2	240					
i08	ST 578	1-82	total				
6	Ø8	Ø6					
2	83	26,5	211,5				


KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP

Residential building based on monolithic modular technology in Shymkent

	stage	list	lists
Calculation and design part	DP	7	10
Diaphragm design	Construction and building materials departmen		

					KazNITU-5B072900-Civil Engene	U-5B072900-Civil Engeneering-Stb-08.03.2021-DP				
Char			Qian	Data	Residential building based on technology in Shymkent					
Cnan	Num.par.List	Nºdoc	Sign	Date						
Hea	ad of Dep	Kozyukova.N.V	r			stage	list	lists		
Consultant Supervisor		Kozyukova.N.V	,		Technological part	DP	9	10		
		Dostanova .S.F	1							
Con	troller	Bek .A.A				Construction and building				
Crea	ated	Hashimi.S.M			Overhead working	Construction and building materials departmen				

	TaskTask Name Mode	Duration Start	Finish Pre	edecessorsResource Names	Qtr 2, 2021	Qtr 3, 2021 Qtr 4, 2021 Qtr 1, 2022 Qtr 2, 2022 Qtr 3, 2022 Qtr 4, 2022	
	Soil preparation	3 days Mon 4/19/21\	Wed 4/21/21	construction manager Exca	Apr May	Jun Jui Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov Dec Jan avator 2, machine [1], staff 4, staff 5, staff 6, staff 9	In the pro
-	Manual preparation		Fri 4/23/21	machine[1],site		hine[1],site Engineer,Staff 1,staff 2,staff 4	with the requi Construction" a
	of the bottom	4/21/21		Engineer,Staff 1,staff			Workers must b
	Instalation of	7 days Thu	Fri 5/7/21	construction manager	📃 🗖	onstruction manager	Guardrails must
	foundation	4/29/21		2,staff 4			Access ladders i
	reinforcement						platform.
		15.5 Fri 5/7/21 I		construction			Ladders or an a
-	formwork		5/28/21	manager,project manager ,formwork[1],supervisor 1	_	site Engineer,supervisor 1,PM 1,Staff 1,staff 2	Equipment mus
	Installation of formwork of	5.5 days Fri 5/7/21 Fi	15/14/21	1,PM 1,Staff 1,staff 2			The form
	faoundation			site Engineer, supervisor			must be manufa
		10 days Mon	Fri 5/28/21	staff A,staff B,staff c,staff D		staff A, staff B, staff c, staff D	with the establis
	installation of	5/17/21					Formwor
	Installation of	6 days Thu	Thu	staff E,staff F	ĺ	staff E,staff F	with the permis
	scaffolds	5/20/21	5/27/21				The prep designated plac
	Laying concrete	6 days Thu 6/3/21 Th	u 6/10/2114 sit	te Engineer, supervisor 1		site Engineer, supervisor 1	The give
		8 days Fri 6/11/21 Tu		8 construction manager, site		Construction manager, site Engineer, staff F, supervisor 1	by 80 cm and o
	reinforcement of		6/22/21	Engineer, staff F, supervisor			Walking
	slabs		- 6 10 10 -	1	-	site Engineer concrete[1] supervisor 2	40 cm.
	-	6 days Tue 5/25/21Ti		site Engineer,concrete[1],su	pervisor 2	site Engineer,concrete[1],supervisor 2	When cra
	Removing of formwork	•	Thu 6/10/21	site Engineer, supervisor 2			Do not carry th
-			6/10/21 Fri 5/28/21	staff E,staff F,staff D,staff		staff E,staff F,staff D,staff g,staff L	It is forbi
	formorks of	4 days rue 5/25/21	111 3/ 20/ 21	g,staff L			as to conduct in
	foundation	5, 25, 21					It is prol
		4 days Mon	Thu	staff c, staff o, supervisor 1		staff c,staff o,supervisor 1	power lines of a
	formorks of slabs		6/10/21				The desc If cracks
	Preparation of			5 staff F, supervisor 1		👷 staff F,supervisor 1	it is necessary t
	concrete	5/26/21	6/2/21				Welding
-		6 days Tue	Tue	staff		staff F,machine[1],concrete[1],PM 1,Staff 1,staff 2,supervisor 1	on duty.
	001101010		5/25/21	F,machine[1],concrete[1],PI	h		For a ten
	delivery by	-, -,	-, -,	1,Staff 1,staff 2,supervisor			and suspended
	concrete pumps			1			above the aisle
			Tue 6/1/21	staff F,staff g,staff h,staff		staff F,staff g,staff h,staff L,supervisor 1,TESTTER 1	ground, the ele-
	dilivary of concrete	5/25/21		L, supervisor 1, TESTTER 1			Welding
_	for slab	22 days Thu	5-: 7/0/04			concrete[1],machine[1],PM 1,supervisor 1,TESTTER 1,staff A,staff B,staff w,staff x	with SNiP 1-85
	Preparation of masonry	22 days Thu 6/10/21	Fri 7/9/21	concrete[1],machine[1],PM 1,supervisor 1,TESTTER 1			Welding
		30 days Fri 7/9/21 Th	1	Crane 1,PM 1,staff 5,staff 6		Crane 1,PM 1,staff 5,staff 6 ,staff 9 ,staff 10,staff q,staff r,steel,supervisor 1,supervisor 2,TESTTER 1	[
	balconies		8/19/21	,staff 9 ,staff 10,staff			DIIC
	Laying partiontion 17			q,staff r,steel,supervisor		staff 7 ,PM 1,staff g,staff h,staff L,supervisor 1	BUF
	Construction of the			concrete[1],construction		concrete[1],construction manager,Crane 1,Staff 1,staff 2,staff 4,staff 5,staff 6,staff 9	
	roofs		10/15/21	manager,Crane 1,Staff			
		25 days Fri 10/15/21		staff 8 , staff 7 ,Gap filler,su		staff 8 , staff 7 ,Gap filler,supervisor 1	
		67 days Thu 11/18/2		staff 9 ,staff B,staff D,staff g			Lago responses
		21 days Fri 2/18/22 F		paint[1],staff 10,staff p,staff	w,staff x,s	teel,supervisor 1 paint[1],staff 10,staff p,staff w,staff x,steel,supervisor 1	25,000 hrs —
	TaskTask Name Mode	Duration Start	Finish Pre	edecessorsResource Names	Qtr 2, 2021	Qtr 3, 2021 Qtr 4, 2021 Qtr 1, 2022 Qtr 2, 2022 Qtr 3, 2022 Qtr 4, 2022	paper sacremento
					Apr May	Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan	20,000 hrs —
		41 days Fri 3/18/22 F		staff 8 ,staff F,staff h,superv		staff 8, staff F, staff h, supervisor 3	
_		16 days Fri 5/13/22 F		staff 9 ,staff c,staff g,superv		staff 9, staff c, staff g, supervisor 3	15,000 hrs —
		29 days Fri 6/3/22 W		staff A, staff g, staff o, supervi		staff A, staff g, staff o, supervisor 1	and a share the second of a state of the
-	-	38 days Wed 7/13/22		staff 8 , staff 7 ,Architect,st	att x,super		10,000 hrs —
		10 days Fri 9/2/22 Th		staff 10, staff B, staff c, staff		staff 10,staff B,staff C,staff D,s	
-	elevators Other works		9/15/22 Thu 10/13/22	D,steel,supervisor 1 Staff A,staff F,staff h,staff m	superviso	2.supervisor 3 staff A,staff F,staff h,sta	5,000 hrs —
-		23 days Tue 9/13/22 18 days Thu 10/13/22				er 4,plumber 5, plumber 6, staff A, staff E, staff h, staff o Plumber 1,plumber	CA C(10, 10, 10)
-	-			plumber 3,plumber 5 ,site E			0 hrs —
1				Elitrician, staff 5, staff c, staff	-	Elitrician, staff	
1	Weak power lines 7 of			staff F, staff o, staff p, steel		staff F,staff	4/2
		7 days Thu 12/8/22Fi		Architect, staff D, staff p, sup	ervisor 3	Architect,s	5/4/20
			Thu	project manager	-	project m	
	project	12/16/22					Rema
							Basel
	Task		P	roject Summary	М	anual Task Start-only C Deadline	-
	Project1 Split			active Task		ration-only Finish-only Progress	WORK BURNDOW
	e 5/18/21 Miles			active Milestone		anual Summary Rollup External Tasks Manual Progress	Shows how much
		mary		active Summary		anual Summary External Milestone	cumulative work

					KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP					
						Residential building based on monolithic modular				
Chan	Num.par.List	Nºdoc	Sign	Date	technology in Shymkent					
Hea	d of Dep	Kozyukova.N.V	,			stage	list	lists		
Consultant Supervisor		Kozyukova.N.V	,		Technological part	DP	10	10		
		Dostanova .S.H	1					10		
Controller Created		Bek .A.A				Construction and building				
		Hashimi.S.M			General work schedule		Construction and building materials departmen			

of reinforced concrete works, it is necessary to strictly comply of SNiP 1-85-2001 "Occupational Health and Safety in ve certain rules:

led with safe access to the work.

n place as work progresses. roperly erected tied and project at least 1 metre above the landing

affold must be used for access.

od order before use.

ed for the erection of monolithic reinforced concrete structures nd applied in accordance with the PPR approved in accordance edure.

be developed after the concrete has reached the specified strength ie foreman.

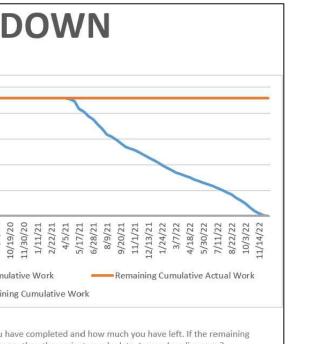
d processing of the reinforcement must be carried out in specially s purpose.

ing mesh is lowered over the place of its laying not lower than he reinforcement workers direct it to the design position. reing elements is allowed only on the gangways of a width of 30-

working, people are not allowed to stay in the zone of operation. er workers.

wing a suspended cargo and leave it without supervision, as well with a wind of more than 6 points.

operate the boom crane directly under the wires of operating


rkers into the pit or trench is allowed only on the stairs.

es appear in the slopes of the trench, which threaten the collapse, valls or reduce the steepness of the slope before the work begins. ners and lighting fixtures must only be connected to an electrician

ower grid on a construction site, an insulated wire should be used e supports at a height of at least 2.5 m above the workplace, 3 m above the thoroughfares. At an altitude of at least 2.5 m from the res must be enclosed in cords or boxes.

her housings and welded products are grounded in accordance .15.

ers are only included in the network with the use of closed types.

eper, then the project may be late. Is your baseline zero?

RESPONSE

OF THE SUPERVISOR

for the graduation project

Hashimi Sayed Mustafa 5B072900-Civil Engineering

Topic: «Residental buiding based on prefabricated modular technology in Shymkent»

Student Hashimi S.M. during the training showed good preparation, professional literacy and erudition.

Hashimi S.M. completed her thesis in full and literacy for further work in this specialty.

All sections are made at a good level and fully meet the requirements for the thesis. An analytical review of the selected design of the building of a residential building, taking into account the climatic conditions, is carried out. The architectural-planning and structural sections were developed in accordance with the issued task. According to the given task, the diaphragm and plate structures were calculated, as well as the technological map for concrete work. The technical and economic review and construction production technology have been developed at a good level.

The thesis is completed at a good level and meets the requirements for bachelor's theses. Hashimi S.M. deserves a high score of 90 points.

Supervisor

Master of technical sciences, lecturer

_Kozyukova N.V.

«30<u>» may</u> 2021 yr.

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: ХАШИМИ Саид Мустафа

HasBahne: Residential building based on prefabricated modular technology in Shymkent

Координатор:Надежда Козюкова

Коэффициент подобия 1:3.4

Коэффициент подобия 2:1.1

Замена букв:110

Интервалы:0

Микропробелы:6

Белые знаки: 0

После анализа Отчета подобия констатирую следующее:

- обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;
- □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

.....

.....

.....

Дата

Подпись Научного руководителя

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: ХАШИМИ Саид Мустафа

Hasbahue: Residential building based on prefabricated modular technology in Shymkent

Координатор: Надежда Козюкова

Коэффициент подобия 1:3.4

Коэффициент подобия 2:1.1

Замена букв:110

Интервалы:0

Микропробелы:6

Белые знаки:0

После анализа отчета подобия заведующий кафедрой / начальник структурного подразделения констатирует следующее:

□ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите;

□ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

□ обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Обоснование:

••••••

.....

начальника структурного подразделения

Окончательное решение в отношении допуска к защите, включая обоснование:

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения